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EXECUTIVE SUMMARY 

Part 1 of this study explores the differences between day and night pedestrian-injury 

severities in vehicle-pedestrian crashes over a five-year period using data from the state of 

Kansas. To account for the effect of possible missing attitudinal data (generally not present in 

traditional data sources), mixing distributions are introduced in statistical model estimation. 

Using this approach, separate statistical models (random parameters logit models with possible 

heterogeneity in the means and variances of the random parameters) were estimated for day 

and night crashes to examine different pedestrian injury severity outcomes (no visible injury, 

moderate injury, and severe injury). Likelihood ratio tests were conducted to explore the 

temporal stability of the model estimations over different times of day and years. Many 

variables affecting injury severities were considered in model estimation including time and 

location of accidents, in addition to information on environmental, roadway, crash, vehicle, 

driver, and pedestrian characteristics. The findings indicate that the factors affecting pedestrian 

injury severities did change over time but that there is a clear day-night difference in the 

resulting injury severities of pedestrians, with nighttime crashes consistently resulting in more 

severe injuries overtime. This suggests policies and technologies that seek to essentially 

replicate daytime conditions (improved illumination, infrared pedestrian detection in vehicles, 

etc.) in nighttime conditions could have considerable safety benefits. Using the estimated 

random parameters models, extensive out-of-sample prediction simulations are used to provide 

estimates of the potential benefits of such nighttime mitigation policies and technologies, as 

well as how daytime/nighttime pedestrian injury severity probabilities have been changing over 

time. Because of the statistical significance of random parameters in the model estimations, 

attitudes and possible behavioral shifts are likely playing key roles. 

Part 2 explores a limitation of the in safety practice where attitudes and other behavioral 

elements are generally not considered. Again, viewing these elements as unobserved 

heterogeneity, random parameters bivariate models are estimated where different crash 

frequencies on the same roadway section can be modeled simultaneously provides the 

flexibility to consider the correlations between different injury severity crash frequencies. 

Specifically, a bivariate model and two separate univariate models were estimated for 

noninjury and injury crashes on freeways. The performances of both model structures were 

compared using various metrics. Univariate models had better performance for no-injury crash 

frequencies and bivariate model had better performance for injury crashes.  Most importantly, 

both univariate and bivariate safety had statistically significant random parameters, suggesting 

that unobserved heterogeneity is playing an important role. Again, the performance of both 

random parameters bivariate models and random parameters univariate models suggest that 

their ability to capture missing attitudinal and behavioral elements through mixing-

distributions is an important practical consideration in model estimation. Because attitudinal 

data is nearly impossible to gather with traditional crash-data sources, the importance of 

considering unobserved heterogeneity via mixing distributions or other methods is an empirical 

necessity. 

The findings of this study show the urgent need to consider unobserved heterogeneity in 

highway safety practice as a way of capturing attitudes, behavioral elements and other factors 

that cannot be captured from traditional crash data sources. 
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PART I 

Differences between day and night pedestrian-injury severities: 

Accounting for temporal and unobserved effects in prediction 

 

1.1 Introduction 

Worldwide, roadway mortality rates have increased over the recent years reaching over 

1.3 million fatalities each year, with the vulnerable roadway users (pedestrians, cyclists, and 

motorcyclists) accounting for nearly half of the fatalities (WHO, 2018). In the United States, 

the number of pedestrian fatalities increased by over 50% in 2019 compared to 2009 while 

other-roadway fatalities increased by less than 1%, for the same period (FARS, 2019). The 

increase in the fatality numbers clearly shows that pedestrians are facing a greater risk of fatal 

injury in recent years, and many factors potentially play a role in this. For example, vehicle 

manufacturing designs (moving away from to less aerodynamic frontal areas which are likely 

to be less safe for pedestrians) and vehicle choices (the movement away from traditional 

passenger cars to larger sport utility vehicles and pickup truck) have changed over the years 

which may cause more severe outcomes for pedestrians hit by vehicles. In addition, pedestrians 

may be adversely impacted by many new safety features because drivers might feel safer and 

drive more aggressively thus imposing an adverse externality on pedestrian safety. This risk-

compensating effect of safety features has been supported by past empirical research (Winston 

et. al., 2006). 

The increase in pedestrian fatalities could also be associated with other factors. For 

example, the constant lighting-condition changes throughout different times of the day could 

affect the risk perception ability for both drivers and pedestrians and these perceptions could 

be evolving negatively over time. In the United States, pedestrian fatalities increased by 67% 

during nighttime and by 16% during daytime in the period from 2009 to 2019 (GHSA, 2020; 

FARS, 2019). Both drivers and pedestrians could face significant challenges relating to 
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visibility at night, with drivers not appropriately adjusting their speed to compensate for reduce 

nighttime visibility, and pedestrians overestimating drivers’ ability to see them at night (Tyrrell 

et al., 2004). The combination of these two factors may be changing over time in fundamental 

ways, perhaps influenced over time by increased use of cell phones and other distractions, or 

simply behavioral evolutions over time. 

Improved nighttime lighting is one possible way to address the issue of nighttime 

pedestrian injury severities, but streetlights may have the adverse effect increasing some road-

side accidents (hitting light poles) and they have obvious cost (both capital costs and 

maintenance) and energy-consumption disadvantages. As a consequence, in many locations 

drivers are relying on vehicle headlights alone to drive during dark hours. The problem with 

this is that research has found that drivers usually overdrive their headlamps, meaning that they 

drive faster than their headlights actually allow for them to notice pedestrian and undertake 

proper braking and evasive action (Green, 2020). In addition, general increases in speed limits 

in recent years may also be playing a role since increased speed tends to lower the vision-

perception ability of drivers as their focus narrows down to the center of the road instead of 

being attentive to the approaching pedestrians on the sides of the road (Green, 2020). Regarding 

day/night differences, drivers’ vision-perception is known to change during different times of 

day as well (Behnood and Mannering, 2019; Song et al., 2021). Therefore, studying and 

quantifying the differences, over time, between the severity of pedestrian accidents in day 

versus night conditions is important for developing effective injury-mitigation policies. 

Using five-year single-pedestrian single-vehicle crash data, the goal of the current 

report is to explore the reasons behind the differences in pedestrian injuries in day and night 

conditions, and to explore the potential temporal instability of these factors over time. The 

current report is distinguished from previous work that has addressed the temporal instability 

of pedestrian injury severities in two important areas. First, the current report will explicitly 
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consider day vs. night models, making the case (theoretically and empirically) that these two 

time periods should be considered separately in model estimation. Second, and perhaps more 

importantly, the current report will use out-of-sample prediction to determine the aggregate 

differences between day and night conditions as well the aggregate differences over time. Thus, 

in contrast to past work that has looked at how the marginal effects of explanatory variables 

have changed over time, this report will not only look at changing marginal effects but what 

the aggregate effect of all variables has on injury severities over time and between day and 

night conditions. 

The following section of this part of the report provides a summary of previous research 

work that has addressed the association between time of day and pedestrian injury severity. 

Next, the data and methodology used in the study are presented and a set of temporal instability 

tests are conducted and discussed, and the model estimation results are then presented. Finally, 

the last two sections of this part of the report provide a prediction comparison of results (using 

an out-of-sample simulation approach) and study conclusions. 

 

1.2 Literature review 

The effects of time of day on accident-injury severity outcomes have been widely 

discussed in the literature (Plainis and Murray, 2002; Hao et al., 2016; Jägerbrand and 

Sjöbergh, 2016; Behnood and Mannering, 2019). In general, different times of the day have 

been found to have different effects on the injury severity outcomes, and a number of 

explanations for this finding have been put forward in the literature. For example, drivers 

typically have been found to be more likely fatigued during night hours and that results in 

drivers reacting more slowly, being less attentive to the surroundings, and having weakened 

decision-making skills. Also, people in general were found to make more accurate decisions 

earlier in the day while tending to make less accurate decisions later in the day (Leone et al., 
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2017). These findings are supported by the results of many previous accident-analysis studies. 

For example, daylight conditions were found to significantly decrease severe-injury crash 

outcomes in the mornings while dark conditions were found to increase severe-injury crash 

outcomes for specific years (Behnood and Mannering, 2019). It was also found that crashes 

occurring at night were associated with more severe-injury accidents compared to other times 

of the day (Hao et al., 2016). Furthermore, some work has found the time of the day and 

weather conditions to have an interactive effect on accidents injury severity with some factors 

found be consistent across different time of day and weather combinations (such as high speed 

roadways, tree-related accidents, and pedestrian-involved accidents) while other factors were 

found to be varying across combinations (such as vehicle type, vehicle age, driver age and 

gender, and surface condition) (Ariannezhad and Wu, 2019; Fountas et al., 2020).  

Time of day effects in vehicle/pedestrian collisions have been recognized previously in 

the extant literature (Sullivan, 2001; Kim et al., 2010; Mokhtarimousavi, 2019; 

Mokhtarimousavi et al., 2020; Pantangi et al., 2021). The effects of time of day on pedestrian 

injury severity is seen to have more notable trends due to the high vulnerability of pedestrians 

to injury relative to other roadway users, and perceptual changes of pedestrian and driver 

behaviors between day and night conditions. Daylight indicator variables, for example, have 

been previously found to be associated with a decrease in the likelihood of severe pedestrian 

injuries and a corresponding increase in the likelihood of minor pedestrian injuries (Behnood 

and Mannering, 2016). Dark (both with and without roadway light), dusk, and dawn condition 

indicators have been found to be associated with higher probabilities of severe pedestrian 

injuries (Song et al., 2020), and pedestrian-involved accidents have been found to increase the 

likelihood of severe injury probability in most time of day and whether variations except for 

dark (lighted) roadways and fine or adverse weather (Fountas et al., 2020).  
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In general, non-daylight condition indicators have consistently been found to be 

associated with an increase in the likelihood of severe pedestrian injuries in pedestrian-

involved vehicular accidents (Kim et al., 2010; Aziz et al., 2013; Pour-Rouholamin and Zhou, 

2016; Xin et al., 2017; Chen and Fan, 2019; Mokhtarimousavi et al., 2020). This observed 

increase in the likelihood of severe injuries during non-daylight conditions might be due to 

several reasons including poor vision, higher speeds (due to potentially lower levels of 

congestion during non-day periods), driver-pedestrian fatigue, and walking or driving under 

influence (Kim et al., 2010; Aziz et al., 2013; Abay, 2013; Mohamed, 2013; Yasmin et al., 

2014). Other reasons might be related to fundamental diurnal behavioral variations among both 

drivers and pedestrians. For example, drivers might accelerate or decelerate in higher rates 

because of the traffic patterns during certain times of the day (dawn and dusk) (Pantangi et al., 

2021). Also, unexpected pedestrian speed changes may significantly affect the severity of 

vehicle-pedestrian accidents (Alhajyaseen and Iryo-Asano, 2017). At-fault pedestrians have 

been found to be associated with more severe injuries in vehicle-pedestrian crashes compared 

to at-fault drivers at both signalized and unsignalized intersections (Haleem et al., 2015). 

Another reason that could be associated with the increase in pedestrian injury severity at night 

could be the simple limitations of the illumination provided by vehicle headlight (Sullivan and 

Flannagan, 2011; Green, 2018). 

There is a general consensus that better lighting conditions (thus more closely 

replicating daytime conditions) may reduce injury risks in vehicle-pedestrian accidents 

(Fountas et al., 2020) and that poor natural lighting can be enhanced with Li et al. (2021) 

finding that sufficient artificial lighting is safer for pedestrians and drivers relative to poor 

natural lighting conditions (dawn and dusk). 

Other factors that have been found to be associated with higher likelihoods of severe 

pedestrian injuries are the day of the week (Pour-Rouholamin and Zhou, 2016; Li et al., 2021), 
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older pedestrians (Yasmin et al., 2014; Haleem et al., 2015; Pour-Rouholamin and Zhou, 2016; 

Zamani et al., 2021), older drivers (Mohamed, 2013; Pour-Rouholamin and Zhou, 2016), 

younger drivers (Abay, 2013; Pour-Rouholamin and Zhou, 2016), male drivers (Forbes and 

Habib, 2015), male pedestrians (Abay, 2013), higher speed limits speed limit (Tay et al., 2011; 

Quin and Fan, 2021), multiple-lane road (Aziz et al., 2013; Pour-Rouholamin and Zhou, 2016), 

vehicle type (sport-utility vehicles and pickup) (Mohamed, 2013; Pour-Rouholamin and Zhou, 

2016) and rainy weather (Tay et al., 2011; Aziz et al., 2013; Zhai et al., 2019). Some factors 

associated with a lower likelihood of severe pedestrian injury are the presence traffic signs, 

traffic signals, younger pedestrian (Zamani et al., 2021), pedestrian use of contrasting clothing 

(Pour-Rouholamin and Zhou, 2016), intersection-located accidents (Aziz et al., 2013; 

Mohamed, 2013), rush hours, and clear weather (Forbes and Habib, 2015). For an additional 

extensive review of factors affecting pedestrian injury severity in numerous previous studies, 

please see Zamani et al. (2021) as they cover a wide range of variables and crash-related 

attributes. 

Possible temporal instability in the presence the unobserved heterogeneity in the 

statistical modeling of pedestrian injury severity outcomes in relation to day versus night 

crashes is a potentially important issue that has not yet been addressed in the literature. 

However, some previous work has discussed the changing effects of pedestrian-related 

accident injury severity outcome over time. Studying the variables that affect pedestrian injury 

severity and their temporal stability over a six-year period, Zamani et al. (2021) found that 

indicator variables affecting pedestrian injury severity were unstable over the years. They 

concluded that the daylight condition indicator was a temporally stable variable decreasing the 

likelihood of severe injury while the pedestrian injury severity during other lighting conditions 

(dark, dusk and dawn) were temporally unstable throughout the years. Behnood and Mannering 

(2016) found the effect of factors influencing the pedestrian injury severity to be unstable over 
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multiple years using two different statistical methods (Behnood and Mannering, 2016). In their 

work, the daylight indicator variable was found to be mostly statistically significant over the 

eight-year period of their study. The behavior of this variable, however, was found to be 

unstable in regard to the marginal effects magnitudes. The reason for these observed temporal 

shifts in there is not clear, but the authors speculated that it may be associated with long-term 

underlying fundamental behavioral changes (Behnood and Mannering, 2016). It can also be 

associated specifically with changes in driver’s behavior due to the effects of new vehicle 

safety technologies (with drivers offsetting these new safety features by driving more 

aggressively) and, therefore, this might have a great impact on the resulting pedestrian’s injury 

severity due to their high vulnerability (Winston et al., 2006).  

Batouli et al. (2020) also report some notable temporal changes in severe pedestrian 

injuries over an 11-year period. They found that the sport utility vehicle crash involvement was 

an increasing trend throughout the years with more than 20% difference, and they also found 

that pedestrian-impairment had an increasing effect on severe-injury outcomes over most of 

the years.  

In general, changes in accident characteristics from year to year may introduce temporal 

shifts and that could be associated with several reasons like changes in decision making, risk 

taking, and cognitive behavior and reasoning biases. Ignoring such temporal changes may lead 

to inaccurate results and eventually ineffective crash-injury mitigation policies (Mannering, 

2018). 

Unobserved heterogeneity has become increasingly recognized as an issue likely to 

arise when using current traditional datasets to perform statistical analyses due to missing 

information (for example, detailed information on the speed and energy transfer through the 

vehicle, biomechanics at the time of collision, etc.) and the complex interactions among 

currently available information (Mannering et al., 2016). In previous studies, unobserved 



 

16 

 

heterogeneity in injury-severity models has been accounted for using a wide variety of 

methodological approaches including mixed logit model, latent-class models, Markov-

switching models, and random parameters logit models (Savolainen et al., 2011; Bhat and 

Mannering, 2014; Mannering et al., 2016; Alnawmasi and Mannering 2019; Alogaili and 

Mannering, 2020; Islam et al., 2020; Intini et al., 2020). Failing to account for unobserved 

heterogeneity might lead to inaccuracy when estimating and interpreting the results 

(Mannering et al., 2016; Washington et al., 2020). To get a sense of the range of methodological 

approaches that have been applied in pedestrian injury severity research in the past, and how 

unobserved heterogeneity was addressed, Zamani et al. (2021) provide an excellent summary 

of the methodological approaches used in recent pedestrian-injury severity research. 

 

1.3 Empirical setting 

The data used in this study are the pedestrian injury severities of crashes collected from 

Kansas over a five-year period from January 1, 2013, to December 31, 2017. The utilized data 

has a total of 1,849 single-pedestrian single-vehicle accidents with detailed information on the 

time and location of the crash, pedestrian and driver attributes (such as age, gender, injury 

severity, impairment condition, and action at the time of accident), vehicle characteristics (such 

as type, make, model, color, and year of manufacture), crash attributes (such as reason, type, 

direction, and place of the accident), and road and environment characteristics (such as speed 

limit, lighting condition, and pavement condition). The analysis herein focuses on estimating 

the models using the single-pedestrian single-vehicle crashes that occurred during two times 

of day, daytime (daylight lighting condition) and nighttime (dark, dawn and dusk lighting 

condition).  

For the forthcoming statistical analysis, three possible injury-severity outcomes are 

considered: no visible injury (possible injury or no injury), moderate injury (non-incapacitating 
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injury), and severe injury (fatality or incapacitating injury). For these injury levels, Table 1 

provides the observed percent distribution of injuries by year and time of day (day vs. night) 

in the Kansas data. While the values in this table show the percent by injury level do fluctuate 

over time for both day and night accidents, there is not necessarily a clear increasing or 

decreasing trend. In contrast, in comparing day and night injury-level percentages across the 

years it is clear that nighttime accidents result in a consistently higher percentage of severe 

injuries relative to daytime accidents. The forthcoming statistical analysis will explore these 

yearly and daytime vs. nighttime trends in detail. 

Table 1. Pedestrian injury severity distribution, percentages by year and time of day. 

 

  Minor Injury  Moderate Injury  Severe Injury 

Year  Day Night  Day Night  Day Night 

2013  36.12 35.88  44.05 34.35  19.82 29.77 

2014  46.29 42.86  41.92 34.78  11.79 22.36 

2015  40.96 35.06  39.89 40.91  19.15 24.03 

2016  42.42 25.83  43.56 40.40  14.02 33.12 

2017  40.39 31.91  43.35 39.01  16.26 27.15 

 

1.4 Methodological approach 

In addition to the uncertainty of the interaction effects of pedestrian injury severity and 

day/night conditions, unobserved heterogeneity is expected to play a significant role in the 

study because factors that affect pedestrian injury severity are not fully covered in currently 

available data sets (Mannering et al., 2016). Thus, to undertake this issue, a statistical model 

that accounts for potentially complex forms of unobserved heterogeneity must be used to arrive 

at model estimates that are as accurate as possible. In this report, injury-severity probabilities 

are studied using a random parameters logit model that accounts for possible heterogeneity in 

the means and variances of random parameters, a textbook modeling approach that has become 

increasingly popular in recent empirical studies of injury severity (Washington et al., 2020). 
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For the case addressed in this report (the injury severity of pedestrians in single-vehicle single-

pedestrian crashes) three possible injury-severity outcomes are considered: no visible injury 

(possible injury or no injury), moderate injury (non-incapacitating injury), and severe injury 

(fatality or incapacitating injury). Following past work (Washington et al., 2020), the modeling 

approach starts by defining a function that determines injury severity, 

kn k kn knS = +        (1) 

where knS  is an injury-severity function determining the probability of pedestrian-injury 

severity outcome k in vehicle-pedestrian crash n, kn  is a vector of explanatory variables that 

affect pedestrian-injury severity level k, k  is a vector of estimable parameters, and kn  is an 

error term. Assuming the error term is extreme value distributed, the standard multinomial logit 

model results as (McFadden, 1981), 

( )
( )

( )

kn

k

n

n

k

k k

EXP
P k

EXP


=









     (2) 

where Pn(k) is the probability that crash n that will result in pedestrian-injury severity outcome 

k with K being the set of the three-possible injury-severity outcomes. To allow one or more 

parameter estimates in the vector βk to vary across crash observations, Equation (2) can be 

rewritten, adding a mixing distribution, as (Train, 2009; Washington et al., 2020), 

   
( )

( ) ( | )
( )

k kn
k k k

k knk

nP
X

EXP
k f d

E P


=  






 


    (3) 

Where ( | )k kf    is the density function of k  and k  is a vector of parameters describing 

the density function (mean and variance), and all other terms are as previously defined. 

The possibility of heterogeneity in the means and variances of random parameters is 

also considered by letting kn  be a vector of estimable parameters that varies across crashes 

defined as (Mannering et al., 2016; Seraneeprakarn et al., 2017; Behnood and Mannering, 
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2017; Alnawmasi and Mannering, 2019; Behnood and Mannering, 2019; Islam et al., 2020; 

Washington et al., 2020; Al-Bdairi et al., 2020; Yu et al., 2020; Li et al., 2021; Hou et al., 2021; 

Yan et al., 2021; Song et al., 2021; Se et al., 2021; Zamani et al., 2021): 

    ( )kn kn kn kn kn knknEXP v= + + Wβ σ ω      (4) 

where   is the mean parameter estimate across all crashes,
kn  is a vector of crash-specific 

explanatory variables capturing heterogeneity in the mean that affects pedestrian injury-

severity level k , 
kn  is the corresponding vector of estimable parameters, 

knW  is the vector of 

crash-specific explanatory variables capturing heterogeneity in the standard deviation knσ  

with corresponding parameter vector knω , and knv  is a disturbance term. Possible correlation 

among random parameters was also considered (Fountas et al., 2018; Fountas et al., 2019; 

Saeed et al., 2019; Washington et al., 2020) during model estimation. 

The models were estimated by simulated maximum likelihood with 1,000 Halton draws 

(McFadden and Train, 2000; Washington et al., 2020). To assist in the interpretation of the 

findings, marginal effects were also computed to capture the effect that a one-unit change in 

any specific explanatory variable has on the probability of an injury-severity outcome. The 

values of the corresponding marginal effects were calculated for each observation and were 

averaged over the population of observations.  

 

1.5 Temporal stability tests 

To statistically test if pedestrian-injury severity models are significantly different 

between day and night across the years from 2013 to 2017, likelihood ratio tests were 

conducted with the χ2 distributed test statistic being (with degrees of freedom equal to the 

number of estimated parameters), for each year (see Washington et al., 2020), 

2 2[ ( ) ( )]ND DX LL LL= − −β β      (5) 
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where ( )NDLL β  is the log-likelihood at convergence of the model (for a given year) estimated 

using converged parameters from night data on day data (restricting the parameters to be night 

estimated parameters) for that year. ( )DLL β  is the log-likelihood at convergence of the model 

of the model using the day data. Reversing day and night for this test was also performed for 

each year, as well. The resulting value X 2 is χ2 distributed and can be used to determine if the 

null hypothesis that the parameters are equal in the five years can be rejected. The results of 

the tests for day and night are shown in Table 2. The values in Table 2 show clearly that the 

null hypothesis that day and night injury severity models are the same can be rejected with over 

99.9% for each of the five years. 

Table 2. Likelihood ratio test results between day and night (in parantheses) for different 

years (refer to Equation 5). 

Time X 
2

 
Percent Confidence 

Level 
Degrees of 

Freedom 

2013 98.399 (72.394) 99.99 (99.99) 17 (17) 

2014 82.739 (260.759) 99.99 (99.99) 19 (16) 

2015 45.911 (114.119) 99.99 (99.99) 11 (15) 

2016 133.512 (72.120) 99.99 (99.99) 17 (11) 

2017 351.043 (57.150) 99.99 (99.99) 12 (11) 

 

Next, a series of likelihood ratio tests are conducted to determine if the separately 

estimated day models and separately estimated night models are temporally stable over the 5-

year study period. The χ2 distributed test statistic is now (with tests run separately for both day 

and night models), 

2 1 1

2 2[ ( ) ( )]t t tX LL LL= − −       (6) 

where, 
2 1

( )t tLL   is the log-likelihood at convergence of a model containing converged 

parameters based on using time-period t2’s data, while using data from time-period t1, and 
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1
( )tLL   is the log-likelihood at convergence of the model using time-period t1’s data (with 

parameters are no longer restricted to using time-period t2’s converged parameters as is the 

case for 
2 1

( )t tLL  . This test was also reversed such that time-period t1’s above becomes time 

period t2 and time period t2 above becomes subset t1 (thus again giving two test results for each 

model comparison). The test results shown in Table 3 again indicate that the null hypothesis 

that day-model estimates are the same from one year to the next can be rejected with over 99% 

confidence and the same is true of the night-model estimates.1 

The likelihood ratio test results in Tables 2 and 3 show clearly show that, to 

appropriately model the 5 years of available data, separate day and night models for each year 

should be estimated, for a total of 10 model (a day model for each of the 5 years and a night 

model for each of the 5 years). 

 

1.6 Model estimation results 

Below, we present a discussion of selected variables and their effects on pedestrian-

injury severity in daytime and nighttime crashes over several years. Tables 4-13 present the 

estimation results for models estimated using 2013-2017 day and night pedestrian data, 

separately.2 Also, Table 14 shows a comparison of marginal effects of single-pedestrian single-

vehicle crashes over the four years for both times of day. Heterogeneity in the means of the 

random parameter was found to be significant in many estimations, but none of the models had 

statistically significant heterogeneity in the variance. Also, during estimation, models that 

 
1 An alternative likelihood ratio test, often included in the temporal instability literature, is to estimate a model using the data 

from all time periods and compare its log-likelihood at convergence to the log-likelihoods at convergence of models based 

on the individual time periods. As shown in Hou et al. (2022), this global stability test is less discriminating than the pairwise 

test shown in Equation 6, and it is more likely that overall instability will be found when there may be stability between 

year-pairs in the data. As a result of the Hou et al. (2022) findings and to save space, the global stability tests are not presented 

herein although all such tests were conducted and indicated overall global temporal instability. 
2 For determining the statistical significance of the standard deviations of random parameter it is important to note that the t-

statistics are only suggestive, and the correct measure of statistical significance is the improvement in convergence as 

measured by the χ2 distributed likelihood ratio test that compares the model with the parameter in question as fixed to a 

model where it is random model (where the additional standard deviation parameter is estimated). In all cases of the estimated 

models the null hypothesis that fixed and random parameters were equal could be rejected with over 90% confidence. 
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Table 3. Likelihood ratio test results between different years for day and night. Shown are the confidence levels in percentage and (degrees of 

freedom in parentheses) and [X 2 in brackets] (refer to Equation 6). 

  Comparison year, t2 

  2013  2014  2015  2016  2017 

Base 

year, 

t1  

 

Day Night 

 

Day Night 

 

Day Night 

 

Day Night 

 

Day Night 

2013 
 

- -  
99.99 (19) 

[117.11] 

99.99 (16) 

[471.35] 
 

99.98 (11) 

[35.21] 

99.99 (15) 

[67.64] 
 

99.99 (16) 

[78.36] 

99.99 (11) 

[46.97] 
 

99.99 (16) 

[52.76] 

99.99 (11) 

[69.12] 

2014 
 99.99 (16) 

[87.85] 

99.99 (17) 

[47.40] 
 - -  

99.92 (11) 

[31.90] 

99.99 (15) 

[75.46] 
 

99.99 (16) 

[51.41] 

99.99 (11) 

[75.03] 
 

99.99 (16) 

[284.28] 

99.99 (11) 

[54.71] 

2015 
 99.99 (16) 

[605.90] 

99.99 (17) 

[74.37] 
 

99.99 (19) 

[87.46] 

99.99 (16) 

[86.54] 
 - -  

99.99 (16) 

[244.74] 

99.99 (11) 

[79.42] 
 

99.99 (16) 

[39.91] 

99.99 (11) 

[46.77] 

2016 
 99.99 (16) 

[71.35] 

99.99 (17) 

[49.96] 
 

99.99 (19) 

[62.90] 

99.99 (16) 

[95.91] 
 

99.80 (11) 

[29.99] 

99.99 (15) 

[47.25] 
 - -  

99.99 (16) 

[292.78] 

99.99 (11) 

[163.43] 

2017 
 99.99 (16) 

[347.77] 

99.99 (17) 

[85.96] 
 

99.99 (19) 

[93.13] 

99.99 (16) 

[100.18] 
 

99.99 (11) 

[46.77] 

99.99 (15) 

[655.18] 
 

99.99 (16) 

[259.97] 

99.90 (11) 

[30.36] 
 - - 
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Table 4. Random parameters model results for single-vehicle single-pedestrian injury severity 

for Kansas for 2013-day data to (parameters defined for: [NVI] No visible injury; [MI] 

Moderate Injury; [SI] Severe Injury).  
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 0.98 2.05    

Constant [SI] -2.21 -3.38    

Random parameter (normally distributed) 
     

Male driver indicator (1 if driver is male, 0 

otherwise) [MI] 

0.22 0.47 -0.0127 0.0193 -0.0066 

Standard deviation of male driver indicator 2.72 1.54    

Vehicle characteristics 
     

Pickup vehicle indicator (1 if vehicle type was 

Pickup, 0 otherwise) [NVI] 

-1.06 -2.26 -0.0336 0.0198 0.0138 

SUV vehicle indicator (1 if vehicle type was SUV, 

0 otherwise) [SI] 

1.00 2.09 -0.0153 -0.0146 0.0299 

Roadway characteristics 
     

Center or edge line indicator (1 if traffic control 

type was center or edge line, 0 otherwise) [NVI] 

-0.70 -1.77 -0.0305 0.0176 0.0130 

Crash characteristics 
     

Damaged vehicle indicator (1 if vehicle damaged 

was disabling, 0 otherwise) [SI] 

2.26 2.42 -0.0062 -0.0067 0.0129 

Vehicle side impact indicator (1 if vehicle principal 

impact is on the left side, 0 otherwise) [NVI] 

1.79 2.59 0.0240 -0.0164 -0.0076 

Driver characteristics 
     

Inattention on driving indicator (1 if driver was not 

paying attention, 0 otherwise) [NVI] 

1.69 3.57 0.0530 -0.0316 -0.0214 

Seatbelt indicator (1 if driver used seatbelt, 0 

otherwise) [SI] 

1.88 3.06 -0.1028 -0.0955 0.1984 

Pedestrian characteristics 
     

No safety equipment indicator (1 if pedestrian did 

not use any pedestrian equipment, 0 otherwise) 

[NVI] 

-0.85 -1.99 -0.1075 0.0670 0.0405 

Younger pedestrian indicator (1 if pedestrian is less 

than 25 years old, 0 otherwise) [MI] 

0.85 2.25 -0.0419 0.0707 -0.0288 

Pedestrian signal disobedience indicator (1 if 

pedestrian disobeyed pedestrian signal, 0 

otherwise) [SI] 

2.55 2.90 -0.0093 -0.0126 0.0219 

Model statistics      

Number of observations 227 

Log-likelihood at zero -249.385 

Log-likelihood at convergence -203.514 
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Table 5. Random parameters model with heterogeneity in the means results for single-vehicle 

single-pedestrian injury severity for Kansas for 2013-night data to (parameters defined for: 

[NVI] No visible injury; [MI] Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 1.77 2.68    

Constant [SI] 2.37 2.70    

Random parameter (normally distributed)      

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 

otherwise) [MI] 

1.55 1.80 -0.0104 0.0226 -0.0122 

Standard deviation of roadway non-intersection 

indicator  

2.49 1.24    

Heterogeneity in the mean of random parameter      

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 

otherwise); multiple lanes indicator (1 if the 

number of lanes is 3 or more, 0 otherwise) [MI] 

-2.63 -1.91    

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 

otherwise); younger driver indicator (1 if driver 

is less than 25 years old, 0 otherwise) [MI] 

-2.70 -1.64    

Vehicle characteristics 
     

Pickup vehicle indicator (1 if vehicle type was 

Pickup, 0 otherwise) [NVI] 

1.68 2.56 0.0477 -0.0135 -0.0342 

Passenger vehicle indicator (1 if vehicle type was 

passenger vehicle, 0 otherwise) [SI] 

-1.12 -2.10 0.0584 0.0415 -0.0999 

Roadway characteristics 
     

Multiple lanes indicator (1 if the number of lanes is 

3 or more, 0 otherwise) [NVI] 

-1.38 -2.86 -0.0883 0.0408 0.0476 

Center or edge line indicator (1 if traffic control 

type was center or edge line, 0 otherwise) [MI] 

1.58 2.38 -0.0355 0.0953 -0.0598 

Traffic signal indicator (1 if Traffic control type 

was signal, 0 otherwise) [SI] 

-2.39 -2.62 0.0179 0.0115 -0.0295 

No pedestrian signal indicator (1 if there was no 

pedestrian signal, 0 otherwise) [SI] 

-1.36 -2.67 0.0691 0.0439 -0.113 

Driver characteristics 
     

Male driver indicator (1 if driver is male, 0 

otherwise) [SI] 

0.99 2.08 -0.0405 -0.0347 0.0752 

Pedestrian characteristics 
     

Younger pedestrian indicator (1 if pedestrian is less 

than 25 years old, 0 otherwise) [MI] 

1.58 2.46 -0.0663 0.1035 -0.0372 

Older pedestrian indicator (1 if pedestrian is 55 

years old or older, 0 otherwise) [SI] 

1.28 2.09 -0.0232 -0.0131 0.0363 

Model statistics 
     

Number of observations 131 

Log-likelihood at zero -143.918 

Log-likelihood at convergence -114.743 
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Table 6. Random parameters model with heterogeneity in the means results for single-vehicle 

single-pedestrian injury severity for Kansas for 2014-day data to (parameters defined for: 

[NVI] No visible injury; [MI] Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 2.31 2.60    

Constant [SI] -0.83 -1.00    

Random parameter (normally distributed)      

Passenger vehicle indicator (1 if vehicle type was 

passenger vehicle, 0 otherwise) [MI] 

-0.08 -0.10 0.0303 -0.038 0.0077 

Standard deviation of passenger vehicle indicator 3.59 1.77    

Heterogeneity in the mean of random parameter      

Passenger vehicle indicator (1 if vehicle type was 

passenger vehicle, 0 otherwise); center or edge line 

indicator (1 if traffic control type was center or edge 

line, 0 otherwise) [MI] 

-2.01 -1.52    

Passenger vehicle indicator (1 if vehicle type was 

passenger vehicle, 0 otherwise); female pedestrian 

indicator (1 if pedestrian is female, 0 otherwise) [MI] 

-1.66 -1.36    

Vehicle characteristics 
     

Pickup vehicle indicator (1 if vehicle type was Pickup, 0 

otherwise) [NVI] 

0.89 1.68 0.0277 -0.0194 -0.0084 

SUV vehicle indicator (1 if vehicle type was SUV, 0 

otherwise) [SI] 

2.44 3.58 -0.0175 -0.0268 0.0442 

Pickup vehicle indicator (1 if vehicle type was Pickup, 0 

otherwise) [SI] 

2.03 2.67 -0.0191 -0.0144 0.0334 

Roadway characteristics 
     

Dry pavement indicator (1 if road surface condition is 

dry, 0 otherwise) [NVI] 

-1.18 -1.75 -0.1591 0.1115 0.0475 

Low road speed limit indicator (1 if road speed limit was 

30 m/h or less, 0 otherwise) [SI] 

-1.31 -2.45 0.0316 0.0203 -0.0519 

Road surface characteristic indicator (1 if the road was 

straight and level, 0 otherwise) [SI] 

-1.27 -1.99 0.0419 0.0267 -0.0686 

Crash characteristics      

Vehicle side impact indicator (1 if vehicle principal 

impact is on the left side, 0 otherwise) [NVI] 

-3.48 -2.74 -0.0165 0.0092 0.0072 

Vehicle front impact indicator (1 if vehicle principal 

impact was on the front, 0 otherwise) [SI] 

1.12 3.65 -0.0656 -0.0384 0.1040 

Pedestrian location indicator (1 if pedestrian was not in 

roadway, 0 otherwise) [SI] 

-2.73 -2.34 0.0048 0.0047 -0.0095 

Driver characteristics 
     

Driver action indicator (1 if driver failed to yield the 

right of way, 0 otherwise) [SI] 

-1.75 -2.43 0.0112 0.0094 -0.0206 

Younger driver indicator (1 if driver is less than 25 years 

old, 0 otherwise) [SI] 

-1.43 -2.37 0.0155 0.0086 -0.0241 

Pedestrian characteristics 
     

No safety equipment indicator (1 if pedestrian did not 

use any pedestrian equipment, 0 otherwise) [NVI] 

-1.52 -2.57 -0.1923 0.1332 0.0590 

Younger pedestrian indicator (1 if pedestrian is less than 

25 years old, 0 otherwise) [MI] 

0.99 2.23 -0.0433 0.0542 -0.0109 

Model statistics 
     

Number of observations 229 

Log-likelihood at zero -251.582 

Log-likelihood at convergence -182.214 

 

  



 

26 

 

Table 7. Random parameters model results for single-vehicle single-pedestrian injury severity 

for Kansas for 2014-night data to (parameters defined for: [NVI] No visible injury; [MI] 

Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 0.86 1.53    

Constant [SI] -3.72 -3.64    

Random parameter (normally distributed)      

Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise) 

[NVI] 

0.91 1.43 0.0551 -0.0312 -0.0239 

Standard deviation of warmer-weather months 

indicator 

3.55 1.89    

Vehicle characteristics 
     

Van vehicle indicator (1 if vehicle type was Van, 0 

otherwise) [NVI] 

3.27 2.68 0.0200 -0.0129 -0.0071 

Roadway characteristics 
     

Wet pavement indicator (1 if road surface 

condition is wet, 0 otherwise) [MI] 

-1.48 -1.73 -0.022 0.0138 0.0082 

Flexible pavement indicator (1 if road surface type 

is asphalt, 0 otherwise) [SI] 

1.04 1.85 -0.0304 -0.0515 0.0819 

Crash characteristics 
     

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 

otherwise) [NVI] 

-1.37 -2.17 -0.0634 0.0356 0.0278 

Vehicle maneuver indicator (1 if vehicle maneuver 

was straight and following the road, 0 

otherwise) [SI]  

1.71 2.98 -0.0522 -0.0868 0.139 

Driver characteristics 
     

Not-injured driver indicator (1 if driver was not 

injured, 0 otherwise) [SI] 

1.63 2.17 -0.0561 -0.0947 0.1507 

Pedestrian characteristics 
     

Male pedestrian indicator (1 if pedestrian is Male, 

0 otherwise) [NVI] 

-1.52 -2.52 -0.1093 0.0691 0.0402 

Running pedestrian indicator (1 if pedestrian action 

was running or playing, 0 otherwise) [MI] 

-1.74 -3.25 0.0326 -0.0692 0.0366 

Pedestrian signal disobedience indicator (1 if 

pedestrian disobeyed pedestrian signal, 0 

otherwise) [MI] 

3.89 2.16 -0.0111 0.0142 -0.0031 

Younger pedestrian indicator (1 if pedestrian is less 

than 25 years old, 0 otherwise) [SI] 

-1.63 -2.72 0.0112 0.0250 -0.0362 

Model statistics 
     

Number of observations 161 

Log-likelihood at zero -176.876 

Log-likelihood at convergence -133.233 
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Table 8. Multinomial logit model results (random parameters were not statistically 

significant) for single-vehicle single-pedestrian injury severity for Kansas for 2015-day data 

to (parameters defined for: [NVI] No visible injury; [MI] Moderate Injury; [SI] Severe 

Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 0.84 3.00    

Constant [SI] -0.85 -2.14    

Vehicle characteristics 
     

SUV vehicle indicator (1 if vehicle type was SUV, 

0 otherwise) [NVI] 

-1.27 -2.90 -0.2772 0.1873 0.0899 

Roadway characteristics 
     

No pedestrian signal indicator (1 if there was no 

pedestrian signal, 0 otherwise) [NVI] 

-0.79 -2.35 -0.1724 0.1164 0.0559 

Wet pavement indicator (1 if road surface 

condition is wet, 0 otherwise) [NVI] 

1.43 1.85 0.3127 -0.2112 -0.1015 

Traffic signal indicator (1 if Traffic control type 

was signal, 0 otherwise) [MI] 

1.21 3.04 -0.1794 0.2652 -0.0858 

Crash characteristics 
     

Vehicle front impact indicator (1 if vehicle 

principal impact was on the front, 0 otherwise) 

[SI] 

0.91 2.27 -0.0647 -0.0644 0.1292 

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 

otherwise) [SI] 

0.78 1.91 -0.0552 -0.0550 0.1102 

Pedestrian characteristics 
     

Younger pedestrian indicator (1 if pedestrian is less 

than 25 years old, 0 otherwise) [SI] 

-0.83 -2.05 0.0587 0.0585 -0.1172 

Model statistics 
     

Number of observations 188 

Log-likelihood at zero -197.160 

Log-likelihood at convergence -180.637 
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Table 9. Random parameters model results for single-vehicle single-pedestrian injury severity 

for Kansas for 2015-night data to (parameters defined for: [NVI] No visible injury; [MI] 

Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] -0.96 -2.26    

Constant [SI] -2.00 -2.99    

Random parameter (normally distributed)      

Younger driver indicator (1 if driver is less than 25 

years old, 0 otherwise) [SI] 

-4.08 -1.25 0.0019 0.0021 -0.0041 

Standard deviation of younger driver indicator 3.92 1.27    

Vehicle characteristics 
     

SUV vehicle indicator (1 if vehicle type was SUV, 

0 otherwise) [MI] 

1.28 2.57 -0.0318 0.0442 -0.0124 

Roadway characteristics 
     

Multiple lanes indicator (1 if the number of lanes is 

3 or more, 0 otherwise) [NVI] 

-1.38 -2.97 -0.0835 0.0559 0.0276 

Traffic signal indicator (1 if Traffic control type 

was signal, 0 otherwise) [MI] 

-2.36 -3.32 0.0428 -0.0561 0.0132 

No pedestrian signal indicator (1 if there was no 

pedestrian signal, 0 otherwise) [MI] 

-1.07 -2.51 0.0728 -0.1155 0.0427 

Stop sign indicator (1 if Traffic control type was 

stop sign, 0 otherwise) [SI] 

3.31 2.54 -0.0201 -0.0083 0.0284 

Center or edge line indicator (1 if traffic control 

type was center or edge line, 0 otherwise) [SI] 

1.42 2.46 -0.0317 -0.063 0.0947 

Low road speed limit indicator (1 if road speed 

limit was 30 m/h or less, 0 otherwise) [SI] 

-1.07 -1.95 0.0237 0.0240 -0.0477 

Crash characteristics 
     

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 

otherwise) [SI] 

1.25 2.39 -0.0288 -0.0362 0.0650 

Driver characteristics 
     

Alcohol-influenced driver indicator (1 if the driver 

was under the influence of alcohol, 0 otherwise) 

[MI] 

-1.92 -1.64 0.0077 -0.0093 0.0017 

Pedestrian characteristics 
     

Walking pedestrian indicator (1 if pedestrian action 

was walking, 0 otherwise) [NVI] 

1.51 2.46 0.0374 -0.0241 -0.0134 

Younger pedestrian indicator (1 if pedestrian is less 

than 25 years old, 0 otherwise) [NVI] 

0.83 2.05 0.0632 -0.0439 -0.0192 

Model statistics 
     

Number of observations 154 

Log-likelihood at zero -169.186 

Log-likelihood at convergence -132.945 
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Table 10. Random parameters model with heterogeneity in the means results for single-

vehicle single-pedestrian injury severity for Kansas for 2016-day data to (parameters defined 

for: [NVI] No visible injury; [MI] Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 1.07 1.06    

Constant [SI] 0.85 0.78    

Random parameter (normally distributed)      

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise) [MI] 

-2.39 -1.64 -0.0237 0.0227 0.0010 

Standard deviation of dry pavement indicator 5.42 2.28    

Heterogeneity in the mean of random parameter      

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise); weekend indicator (1 if 

accident occurred on the weekend days, 0 

otherwise) [MI] 

3.34 1.98    

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise): younger pedestrian 

indicator (1 if pedestrian is less than 25 years 

old, 0 otherwise) [MI] 

1.64 1.42    

Temporal characteristics 
     

Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise) 

[MI] 

1.49 1.69 -0.0535 0.0731 -0.0196 

Vehicle characteristics 
     

SUV vehicle indicator (1 if vehicle type was SUV, 

0 otherwise) [NVI] 

-1.45 -2.70 -0.0376 0.0175 0.0201 

Pickup vehicle indicator (1 if vehicle type was 

Pickup, 0 otherwise) [SI] 

1.89 3.64 -0.0350 -0.0112 0.0462 

Roadway characteristics 
     

Low road speed limit indicator (1 if road speed 

limit was 30 m/h or less, 0 otherwise) [NVI] 

1.32 2.90 0.0971 -0.0469 -0.0502 

Road surface characteristic indicator (1 if the road 

was straight and level, 0 otherwise) [SI] 

-1.11 -1.98 0.0560 0.0159 -0.0718 

Crash characteristics 
     

Vehicle maneuver indicator (1 if vehicle maneuver 

was a right turn, 0 otherwise) [NVI] 

3.68 2.64 0.0285 -0.0231 -0.0054 

Vehicle front impact indicator (1 if vehicle 

principal impact was on the front, 0 otherwise) 

[MI] 

2.38 2.43 -0.0445 0.0607 -0.0162 

Pedestrian location indicator (1 if pedestrian was 

not in roadway, 0 otherwise) [SI] 

-1.88 -1.67 0.0054 0.0015 -0.0069 

Driver characteristics 
     

Driver action indicator (1 if the driver disregarded 

traffic signs, 0 otherwise) [NVI] 

6.88 1.66 0.0066 -0.0065 -0.0001 

Pedestrian characteristics 
     

Older pedestrian indicator (1 if pedestrian is 55 

years old or older, 0 otherwise) [SI] 

1.52 3.03 -0.0333 -0.0099 0.0432 

Model statistics 
     

Number of observations 264 

Log-likelihood at zero -290.034 

Log-likelihood at convergence -219.831 
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Table 11. Random parameters model with heterogeneity in the means results for single-

vehicle single-pedestrian injury severity for Kansas for 2016-night data to (parameters 

defined for: [NVI] No visible injury; [MI] Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 0.36 0.63    

Constant [SI] 1.68 2.12    

Random parameter (normally distributed)      

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise) [MI] 

-5.04 -1.46 -0.0008 0.0206 -0.0198 

Standard deviation of dry pavement indicator 4.77 1.68    

Heterogeneity in the mean of random parameter      

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise); male pedestrian indicator (1 

if pedestrian is male, 0 otherwise) [MI] 

2.15 1.31    

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise): no safety equipment 

indicator (1 if pedestrian did not use any 

pedestrian equipment, 0 otherwise) [MI] 

3.46 1.32    

Temporal characteristics 
     

Weekend indicator (1 if accident occurred on the 

weekend days, 0 otherwise) [SI] 

1.65 2.48 -0.0383 -0.0322 0.0706 

Vehicle characteristics      

Passenger vehicle indicator (1 if vehicle type was 

passenger vehicle, 0 otherwise) [SI] 

-2.08 -3.17 0.0692 0.041 -0.1101 

Roadway characteristics 
     

Low road speed limit indicator (1 if road speed 

limit was 30 m/h or less, 0 otherwise) [SI] 

-2.44 -3.31 0.0566 0.0436 -0.1002 

Intersection type indicator (1 if intersection type is 

four way, 0 otherwise) [SI] 

-2.26 -2.87 0.0249 0.0132 -0.0381 

Crash characteristics 
     

Vehicle front impact indicator (1 if vehicle 

principal impact was on the front, 0 otherwise) 

[NVI] 

-2.91 -3.61 -0.0651 0.0201 0.0449 

Pedestrian location indicator (1 if pedestrian was 

not in roadway, 0 otherwise) [SI] 

-2.57 -2.61 0.0244 0.0074 -0.0318 

Pedestrian characteristics 
     

Older pedestrian indicator (1 if pedestrian is 55 

years old or older, 0 otherwise) [SI] 

1.26 2.00 -0.0219 -0.0205 0.0424 

Model statistics 
     

Number of observations 151 

Log-likelihood at zero -165.890 

Log-likelihood at convergence -128.699 
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Table 12. Multinomial logit model results (random parameters were not statistically 

significant) results for single-vehicle single-pedestrian injury severity for Kansas for 2017-

day data to (parameters defined for: [NVI] No visible injury; [MI] Moderate Injury; [SI] 

Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 2.16 2.23    

Constant [SI] -1.92 -2.47    

Temporal characteristics 
     

Weekend indicator (1 if accident occurred on the 

weekend days, 0 otherwise) [MI] 

0.58 1.81 -0.0861 0.1242 -0.0381 

Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise) 

[SI] 

1.37 2.35 -0.0741 -0.0907 0.1647 

Vehicle characteristics 
     

Pickup vehicle indicator (1 if vehicle type was 

Pickup, 0 otherwise) [MI] 

0.99 2.37 -0.1484 0.2139 -0.0656 

Roadway characteristics 
     

Multiple lanes indicator (1 if the number of lanes is 

3 or more, 0 otherwise) [NVI] 

-1.60 -3.91 -0.3249 0.2387 0.0862 

No pedestrian signal indicator (1 if there was no 

pedestrian signal, 0 otherwise) [NVI] 

-0.96 -2.49 -0.1957 0.1438 0.0519 

Weather condition indicator (1 if there are no 

adverse conditions, 0 otherwise) [NVI] 

-1.47 -1.74 -0.2984 0.2193 0.0792 

Traffic signal indicator (1 if Traffic control type 

was signal, 0 otherwise) [NVI] 

1.07 2.42 0.2181 -0.1603 -0.0579 

Low road speed limit indicator (1 if road speed 

limit was 30 m/h or less, 0 otherwise) [SI] 

-1.14 -2.78 0.0618 0.0757 -0.1374 

Crash characteristics 
     

Vehicle side impact indicator (1 if vehicle principal 

impact is on the right or left side, 0 otherwise) 

[NVI] 

0.79 2.00 0.1610 -0.1183 -0.0427 

Driver characteristics 
     

Male driver indicator (1 if driver is male, 0 

otherwise) [NVI] 

0.75 2.26 0.1528 -0.1123 -0.0405 

Seatbelt indicator (1 if driver used seatbelt, 0 

otherwise) [SI] 

1.08 1.83 -0.0580 -0.0711 0.1291 

Model statistics 
     

Number of observations 203 

Log-likelihood at zero -207.840 

Log-likelihood at convergence -181.310 
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Table 13. Random parameters model with heterogeneity in the means results for single-

vehicle single-pedestrian injury severity for Kansas for 2017-night data to (parameters 

defined for: [NVI] No visible injury; [MI] Moderate Injury; [SI] Severe Injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

Injury 

Moderate 

Injury 

Severe 

Injury 

Constant [NVI] 0.03 0.03    

Constant [SI] 0.74 1.24    

Random parameter (normally distributed)      

Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise) 

[MI] 

0.21 0.26 -0.0191 0.0486 -0.0294 

Standard deviation of warmer-weather indicator 3.36 1.84    

Heterogeneity in the mean of random parameter      

Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise); 

running pedestrian indicator (1 if pedestrian 

action was running or playing, 0 otherwise) [MI] 

2.05 1.38    

Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise); 

walking pedestrian indicator (1 if pedestrian 

action was walking, 0 otherwise) [MI] 

-3.31 -1.21    

Vehicle characteristics 
     

Pickup vehicle indicator (1 if vehicle type was 

Pickup, 0 otherwise) [NVI] 

-1.33 -2.08 -0.029 0.0121 0.0169 

Roadway characteristics 
     

Low road speed limit indicator (1 if road speed 

limit was 30 m/h or less, 0 otherwise) [MI] 

2.31 3.33 -0.0938 0.1612 -0.0674 

Intersection type indicator (1 if intersection type 

was T-intersection, 0 otherwise) [MI] 

-2.03 -1.78 0.0088 -0.0158 0.0070 

Crash characteristics 
     

Damaged vehicle indicator (1 if vehicle damaged 

was disabling, 0 otherwise) [SI] 

3.51 3.10 -0.0129 -0.0156 0.0286 

Vehicle front impact indicator (1 if vehicle 

principal impact was on the front, 0 otherwise) 

[SI] 

1.25 2.56 -0.0557 -0.0371 0.0928 

Driver characteristics 
     

Younger driver indicator (1 if driver is less than 25 

years old, 0 otherwise) [SI] 

-1.31 -2.39 0.0316 0.0174 -0.0490 

Pedestrian characteristics 
     

No safety equipment indicator (1 if pedestrian did 

not use any pedestrian equipment, 0 otherwise) 

[NVI] 

1.65 1.79 0.2368 -0.1033 -0.1336 

Model statistics 
     

Number of observations 141 

Log-likelihood at zero -154.904 

Log-likelihood at convergence -124.151 
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Table 14. Comparison of marginal effects of single-pedestrian single-vehicle crashes over the years for daytime, and for nighttime in parentheses. 

  
No visible Injury 

 
Moderate Injury 

 
Severe Injury 

Variables  
2013 2014 2015 2016 2017 

 
2013 2014 2015 2016 2017 

 
2013 2014 2015 2016 2017 

Temporal characteristics 
 

     
 

     
 

     
Warmer-weather months indicator (1 if accident 

occurs from March until October, 0 otherwise) 

 - 

- 

- 

(0.0551) 

- 

- 

-0.0535 

- 

-0.0741 

(-0.0191) 

 - 

- 

- 

(-0.0312) 

- 

- 

0.0731 

- 

-0.0907 

(0.0486) 

 - 

- 

- 

(-0.0239) 

- 

- 

-0.0196 

- 

0.1647 

(-0.0294) 

Weekend indicator (1 if accident occurred on the 

weekend days, 0 otherwise) 

 - 

- 

- 

- 

- 

- 

 

(-0.0383) 

-0.0861 

- 

 - 

- 

- 

- 

- 

- 

- 

(-0.0322) 

0.1242 

- 

 - 

- 

- 

- 

- 

- 

- 

(0.0706) 

-0.0381 

- 

Vehicle characteristics 
 

     
 

     
 

     

Pickup vehicle indicator (1 if vehicle type was 
Pickup, 0 otherwise) 

 -0.0336 
(0.0477) 

0.0277 
-0.0191 

- 
- 

-0.0350 
- 

-0.1484 
(-0.0290) 

 0.0198 
(-0.0135) 

-0.0194 
-0.0144 

- 
- 

-0.0112 
- 

0.2139 
(0.0121) 

 0.0138 
(-0.0342) 

-0.0084 
0.0334 

- 
- 

0.0462 
- 

-0.0656 
(0.0169) 

SUV vehicle indicator (1 if vehicle type was SUV, 

0 otherwise) 

 -0.0153 

- 

-0.0175 

- 

-0.2772 

(-0.0318) 

-0.0376 

- 

- 

- 

 -0.0146 

- 

-0.0268 

- 

0.1873 

(0.0442) 

0.0175 

- 

- 

- 

 0.0299 

- 

0.0442 

- 

0.0900 

(-0.0124) 

0.0201 

- 

- 

- 

Passenger vehicle indicator (1 if vehicle type was 

passenger vehicle, 0 otherwise) 

 - 

(-0.0584) 

0.0303 

- 

- 

- 

- 

(0.0692) 

- 

- 

 - 

(-0.0415) 

-0.0380 

- 

- 

- 

- 

(0.0410) 

- 

- 

 - 

(-0.0999) 

0.0077 

- 

- 

- 

- 

(-0.1101) 

- 

- 

Van vehicle indicator (1 if vehicle type was Van, 0 
otherwise) 

 - 
- 

- 
(0.0200) 

- 
- 

- 
- 

- 
- 

 - 
- 

- 
(-0.0129) 

- 
- 

- 
- 

- 
- 

 - 
- 

- 
(-0.0071) 

- 
- 

- 
- 

- 
- 

Roadway characteristics 
 

     
 

     
 

     

Center or edge line indicator (1 if traffic control 

type was center or edge line, 0 otherwise) 

 -0.0305 

(-0.0355) 

- 

- 

- 

(-0.0317) 

- 

- 

- 

- 

 0.0176 

(0.0953) 

- 

- 

- 

(-0.0630) 

- 

- 

- 

- 

 0.013 

(-0.0598) 

- 

- 

- 

(0.0947) 

- 

- 

- 

- 

Stop sign indicator (1 if Traffic control type was 

stop sign, 0 otherwise) 

 - 

- 

- 

- 

- 

(-0.0201) 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

(-0.0083) 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

(0.0284) 

- 

- 

- 

- 

Traffic signal indicator (1 if Traffic control type 
was signal, 0 otherwise) 

 - 
(0.0179) 

- 
- 

-0.1794 
(0.0428) 

- 
- 

0.2181 
- 

 - 
(0.0115) 

- 
- 

0.2652 
(-0.0561) 

- 
- 

-0.1603 
- 

 - 
(-0.0295) 

- 
- 

-0.0858 
(0.0132) 

- 
- 

-0.0579 
- 

No pedestrian signal indicator (1 if there was no 

pedestrian signal, 0 otherwise) 

 - 

(0.0691) 

- 

- 

-0.1724 

(0.0728) 

- 

- 

-0.1957 

- 

 - 

(0.0439) 

- 

- 

0.1164 

(-0.1155) 

- 

- 

0.1438 

- 

 - 

(-0.1130) 

- 

- 

0.0559 

(0.0427) 

- 

- 

0.0519 

- 

Low road speed limit indicator (1 if road speed 

limit was 30 m/h or less , 0 otherwise) 

 - 

- 

0.0316 

- 

- 

(0.0237) 

0.0971 

(0.0566) 

0.0618 

(-0.0938) 

 - 

- 

0.0203 

- 

- 

(0.0240) 

-0.0469 

(0.0436) 

0.0757 

(0.1612) 

 - 

- 

-0.0519 

- 

- 

(-0.0477) 

-0.0502 

(-0.1002) 

-0.1374 

(-0.0674) 

Intersection type indicator (1 if intersection type is 

four way, 0 otherwise) 

 - 

- 

- 

- 

- 

- 

- 

(0.0249) 

- 

- 

 - 

- 

- 

- 

- 

- 

- 

(0.0132) 

- 

- 

 - 

- 

- 

- 

- 

- 

- 

(-0.0381) 

- 

- 

Intersection type indicator (1 if intersection type 
was T-intersection, 0 otherwise) 

 - 
- 

- 
- 

- 
- 

- 
- 

- 
(0.0088) 

 - 
- 

- 
- 

- 
- 

- 
- 

- 
(-0.0158) 

 - 
- 

- 
- 

- 
- 

- 
- 

- 
(0.0070) 

Multiple lanes indicator (1 if the number of lanes is 

3 or more, 0 otherwise) 

 - 

(-0.0883) 

- 

- 

- 

(-0.0835) 

- 

- 

-0.3249 

- 

 - 

(0.0408) 

- 

- 

- 

(0.0559) 

- 

- 

0.2387 

- 

 - 

(0.0476) 

- 

- 

- 

(0.0276) 

- 

- 

0.0862 

- 

Road surface characteristic indicator (1 if the road 

was straight and level, 0 otherwise) 

 - 

- 

0.0419 - 

- 

0.056 - 

- 

 - 

- 

0.0267 - 

- 

0.0159 - 

- 

 - 

- 

-0.0686 - 

- 

-0.0718 - 

- 

Dry pavement indicator (1 if road surface condition 

is dry, 0 otherwise) 

 - 

- 

-0.1591 

- 

- 

- 

-0.0237 

(-0.0008) 

- 

- 

 - 

- 

0.1115 

- 

- 

- 

0.0227 

(0.0206) 

- 

- 

 - 

- 

0.0475 

- 

- 

- 

0.0010 

(-0.0198) 

- 

- 

Wet pavement indicator (1 if road surface condition 
is wet, 0 otherwise) 

 - 
- 

- 
(-0.0220) 

0.3127 
- 

- 
- 

- 
- 

 - 
- 

- 
(0.0138) 

-0.2112 
- 

- 
- 

- 
- 

 - 
- 

- 
(0.0082) 

-0.1015 
- 

- 
- 

- 
- 

Flexible pavement indicator (1 if road surface type 

is asphalt, 0 otherwise) 

 - 

- 

- 

(-0.0304) 

- 

- 

- 

- 

- 

- 

 - 

- 

- 

(-0.0515) 

- 

- 

- 

- 

- 

- 

 - 

- 

- 

(0.0819) 

- 

- 

- 

- 

- 

- 

Weather condition indicator (1 if there are no 

adverse conditions, 0 otherwise) 

 - 

- 

- 

- 

- 

- 

- 

- 

-0.2984 

- 

 - 

- 

- 

- 

- 

- 

- 

- 

0.2193 

- 

 - 

- 

- 

- 

- 

- 

- 

- 

0.0792 

- 

Crash characteristics 
 

     
 

     
 

     

Damaged vehicle indicator (1 if vehicle damaged 

was disabling, 0 otherwise) 

 -0.0062 

- 

- 

- 

- 

- 

- 

- 

- 

(-0.0129) 

 -0.0067 

- 

- 

- 

- 

- 

- 

- 

- 

(-0.0156) 

 0.0129 

- 

- 

- 

- 

- 

- 

- 

- 

(0.0286) 
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Vehicle front impact indicator (1 if vehicle principal 

impact was on the front, 0 otherwise) 

 - 

- 

-0.0656 

- 

-0.0647 

- 

-0.0445 

(-0.0651) 

- 

(-0.0557) 

 - 

- 

-0.0384 

- 

-0.0644 

- 

0.0607 

(0.0201) 

- 

(-0.0370) 

 - 

- 

0.1040 

- 

0.1292 

- 

-0.0162 

(0.0449) 

- 

(0.0928) 

Roadway non-intersection indicator (1 if accident 

location was on roadway but non-intersection, 0 
otherwise) 

 - 

(-0.0104) 

- 

(-0.0634) 

-0.0552 

(-0.0288) 

- 

- 

- 

- 

 - 

(0.0226) 

- 

(0.0356) 

-0.0550 

(-0.0362) 

- 

- 

- 

- 

 - 

(-0.0122) 

- 

(0.0278) 

0.1102 

(0.0650) 

- 

- 

- 

- 

Pedestrian location indicator (1 if pedestrian was 

not in roadway, 0 otherwise) 

 - 

- 

0.0048 

- 

- 

- 

0.0054 

(0.0244) 

- 

- 

 - 

- 

0.0047 

- 

- 

- 

0.0015 

(0.0074) 

- 

- 

 - 

- 

-0.0095 

- 

- 

- 

-0.0069 

(-0.0318) 

- 

- 

Vehicle side impact indicator (1 if vehicle principal 

impact is on the left side, 0 otherwise) 

 0.0240 

- 

-0.0165 

- 

- 

- 

- 

- 

- 

- 

 -0.0164 

- 

0.0092 

- 

- 

- 

- 

- 

- 

- 

 -0.0076 

- 

0.0072 

- 

- 

- 

- 

- 

- 

- 

Vehicle side impact indicator (1 if vehicle principal 

impact is on the right or left side, 0 otherwise) 

 - 

- 

- 

- 

- 

- 

- 

- 

0.1610 

- 

 - 

- 

- 

- 

- 

- 

- 

- 

-0.1183 

- 

 - 

- 

- 

- 

- 

- 

- 

- 

-0.0427 

- 

Vehicle maneuver indicator (1 if vehicle maneuver 
was straight and following the road, 0 

otherwise) 

 - 
- 

- 
(-0.0522) 

- 
- 

- 
- 

- 
- 

 - 
- 

- 
(-0.0868) 

- 
- 

- 
- 

- 
- 

 - 
- 

- 
(0.1390) 

- 
- 

- 
- 

- 
- 

Vehicle maneuver indicator (1 if vehicle maneuver 

was a right turn, 0 otherwise) 

 - 

- 

- 

- 

- 

- 

0.0285 

- 

- 

- 

 - 

- 

- 

- 

- 

- 

-0.0231 

- 

- 

- 

 - 

- 

- 

- 

- 

- 

-0.0054 

- 

- 

- 

Driver characteristics 
 

     
 

     
 

     

Inattention on driving indicator (1 if driver was not 

paying attention, 0 otherwise) 

 0.0530 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 -0.0316 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 -0.0214 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Seatbelt indicator (1 if driver used seatbelt, 0 

otherwise) 

 -0.1028 

- 

- 

- 

- 

- 

- 

- 

-0.0580 

- 

 -0.0955 

- 

- 

- 

- 

- 

- 

- 

-0.0711 

- 

 0.1984 

- 

- 

- 

- 

- 

- 

- 

0.1291 

- 

Driver action indicator (1 if driver failed to yield the 
right of way, 0 otherwise) 

 - 
- 

0.0112 
- 

- 
- 

- 
- 

- 
- 

 - 
- 

0.0094 
- 

- 
- 

- 
- 

- 
- 

 - 
- 

-0.0206 
- 

- 
- 

- 
- 

- 
- 

Younger driver indicator (1 if driver is less than 25 

years old, 0 otherwise) 

 - 

- 

0.0155 

- 

- 

(0.0019) 

- 

- 

- 

(0.0316) 

 - 

- 

0.0086 

- 

- 

(0.0021) 

- 

- 

- 

(0.0174) 

 - 

- 

-0.0241 

- 

- 

(-0.0041) 

- 

- 

- 

(-0.0490) 

Driver action indicator (1 if the driver disregarded 

traffic signs, 0 otherwise) 

 - 

- 

- 

- 

- 

- 

0.0066 

- 

- 

- 

 - 

- 

- 

- 

- 

- 

-0.0065 

- 

- 

- 

 - 

- 

- 

- 

- 

- 

-0.0001 

- 

- 

- 

Male driver indicator (1 if driver is male, 0 

otherwise) 

 -0.0127 

(-0.0405) 

- 

- 

- 

- 

- 

- 

0.1528 

- 

 0.0193 

(-0.0347) 

- 

- 

- 

- 

- 

- 

-0.1123 

- 

 -0.0066 

(0.0752) 

- 

- 

- 

- 

- 

- 

-0.0405 

- 

Not-injured driver indicator (1 if driver was not 
injured, 0 otherwise) 

 - 
- 

- 
(-0.0561) 

- 
- 

- 
- 

- 
- 

 - 
- 

 
-(-0.0947) 

- 
- 

- 
- 

- 
- 

 - 
- 

- 
(0.1507) 

- 
- 

- 
- 

- 
- 

Alcohol-influenced driver indicator (1 if the driver 

was under the influence of alcohol, 0 otherwise) 

 - 

- 

- 

- 

- 

(0.0077) 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

(-0.0093) 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

(0.0017) 

- 

- 

- 

- 

Pedestrian characteristics 
 

     
 

     
 

     

Younger pedestrian indicator (1 if pedestrian is less 
than 25 years old, 0 otherwise) 

 -0.0419 
(-0.0663) 

-0.0433 
(0.0112) 

0.0587 
(0.0632) 

- 
- 

- 
- 

 0.0707 
(0.1035) 

0.0542 
(0.0250) 

0.0585 
(-0.0439) 

- 
- 

- 
- 

 -0.0288 
(-0.0372) 

-0.0109 
(-0.0362) 

-0.1172 
(-0.0192) 

- 
- 

- 
- 

Older pedestrian indicator (1 if pedestrian is 55 

years old or older, 0 otherwise) 

 - 

(-0.0232) 

- 

- 

- 

- 

-0.0333 

(-0.0219) 

- 

- 

 - 

(-0.0131) 

- 

- 

- 

- 

-0.0099 

(-0.0205) 

- 

- 

 - 

(0.0363) 

- 

- 

- 

- 

0.0432 

(0.0424) 

- 

- 

No safety equipment indicator (1 if pedestrian did 

not use any pedestrian equipment, 0 otherwise) 

 -0.1075 

- 

-0.1923 

- 

- 

- 

- 

- 

- 

(0.2368) 

 0.067 

- 

0.1332 

- 

- 

- 

- 

- 

- 

(-0.1033) 

 0.0405 

- 

0.0590 

- 

- 

- 

- 

- 

- 

(-0.1336) 

Pedestrian signal disobedience indicator (1 if 
pedestrian disobeyed pedestrian signal, 0 

otherwise) 

 -0.0093 
- 

- 
(-0.0111) 

- 
- 

- 
- 

- 
- 

 -0.0126 
- 

- 
(0.0142) 

- 
- 

- 
- 

- 
- 

 0.0219 
- 

- 
(-0.0031) 

- 
- 

- 
- 

- 
- 

Male pedestrian indicator (1 if pedestrian is male, 0 

otherwise) 

 - 

- 

- 

(-0.1093) 

- 

- 

- 

- 

- 

- 

 - 

- 

- 

(0.0691) 

- 

- 

- 

- 

- 

- 

 - 

- 

- 

(0.0402) 

- 

- 

- 

- 

- 

- 

Running pedestrian indicator (1 if pedestrian action 

was running or playing, 0 otherwise) 

 - 

- 

- 

(0.0326) 

- 

- 

- 

- 

- 

- 

 - 

- 

- 

(-0.0692) 

- 

- 

- 

- 

- 

- 

 - 

- 

- 

(0.0366) 

- 

- 

- 

- 

- 

- 

Walking pedestrian indicator (1 if pedestrian action 
was walking, 0 otherwise) 

 - 

- 

- 

- 

 

-(0.0374) 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

(-0.0241) 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

(-0.0134) 

- 

- 

- 

- 
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included more than one random parameter did not result in statistically significant correlation 

among random parameters. Final model estimations did not include any model with more than 

one random parameter. 

Starting first with variables that produced statistically significant random parameters, 

Tables 4-13 show that out of all eight models had one statistically significant random parameter 

with the explanatory variable varying by year and time of day. Out of these random parameter 

variables, five produced statistically significant heterogeneity in the mean (again, none had a 

statistically significant heterogeneity in the variance). Estimates in Tables 4 and 5 show that 

the male driver indicator and the roadway non-intersection indicator (accidents occur on the 

roadway but not at an intersection) produced statistically significant random parameters in the 

2013-daytime and 2013-nighttime models, respectively. Marginal effects in Table 14 show that 

the average effects of both of these indicators increased the likelihood of pedestrian moderate 

injury (and decreased the likelihoods of no visible injury and severe injury). The roadway non-

intersection indicator, however, had statistically significant heterogeneity in the means, with 

the effect of accidents occurring on roadway but not at an intersection varying by multiple 

lanes (3 lanes or more) and younger drivers (less than 25 years old), with both of these 

deceasing the mean of the random parameter.  

Estimations results for 2014-day accidents (Table 6) indicate that the passenger-vehicle 

indicator produced a random parameter (the effect of this variable on injury severities varied 

across accident observations) with the average marginal effects of this indicator decreasing the 

likelihood of moderate injury while increasing the likelihoods of no visible injury and severe 

injury. This variable also had statistically significant heterogeneity in the means, with the effect 

of accidents involved passenger vehicle varying by control type indicator (center or edge line) 

and female pedestrian both of these deceasing the mean of the random parameter.  
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Model results in Tables 7 and 13 show that the warmer-weather months indicator 

(March through October) produced statistically significant random parameters in both 2014 

and 2017 nighttime models capturing an unobserved heterogeneity in accidents occur at this 

time of day. Marginal effects in Table 14, however, show that this variable had different 

average effects between the two years increasing the likelihood of no visible injury in 2014 

and the likelihood of pedestrian moderate injury in 2017 (and correspondingly decreasing the 

other two injury-severity outcomes). Additionally, this variable had statistically significant 

heterogeneity in the means in the 2017 nighttime model, with the effect of accidents occurring 

during warmer-weather months varying by running and walking pedestrians. In this case, 

running increased the parameter mean resulting in a higher likelihood of moderate injury and 

walking decreased the parameter mean resulting in a lower likelihood of moderate injury. 

Estimates in Table 9 show that the younger driver indicator (less than 25 years old) 

produced a statistically significant random parameter in the 2015 nighttime model, with the 

overall effect of this variable decreasing the likelihood of severe injury (as indicated by 

marginal effects). Estimation results in Tables 10 and 11 show that the dry pavement indicator 

resulted in a statistically significant random parameter variable in both of the 2016 models 

(daytime and nighttime). Marginal effects show that the average effect of this variable in both 

models was to increase the likelihood of moderate injury and decrease the likelihood of no 

visible injury. The presence of different random parameters in different years and times of day 

could be associated with period-specific unobserved effects (Behnood and Mannering, 2016). 

Turning to variables that produced statistically significant parameters that were fixed 

across observations, Tables 4-13 show a variety of variables related to temporal, vehicle, 

roadway, crash, weather, and pedestrian-related characteristics produced statistically 

significant random parameters. The effects of these variables are discussed below and as 
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previously mentioned, Table 14 shows a comparison of marginal effects for all variables in 

different years and times of day. 

 

1.6.1 Time- and weather-related characteristics 

Results in Table 12 show that the no-adverse-weather condition indicator was 

significant in one model (2017-daytime) with the average effect being a decrease in no visible 

injury, which interestingly contradicts the earlier finding of Forbes and Habib (2015). The 

weekend indicator variable produced statistically significant parameters in two models, 2016 

nighttime and 2017 daytime, with the average effect of this variable being somewhat different 

in the two models; increasing the likelihood of pedestrian severe injury in the 2016-nighttime 

model and the likelihood of pedestrian moderate injury in the 2017-daytime model (see Table 

14). Tables 10 and 12 show that the warmer-weather months indicator (March through 

October) was a statistically significant factor in the daytime in two consecutive years, 2016 

and 2017, with the average effect being a decrease in no visible injury (with an increase in 

moderate injury in 2016 and an increase in severe injury in 2017), illustrating different 

marginal effects results relative to the random parameters nighttime models which found this 

variable to be statistically insignificant at night in 2016 and resulting in a random parameter at 

night in 2017. 

 

1.6.2 Vehicle-related characteristics 

As shown in Tables 4 through 13, different types of vehicles resulted in different 

impacts on pedestrian injury severity over the years depending on time of day. For example, 

the pickup-truck indicator vehicle was a statistically significant variable in all daytime models 

(except for 2015), showing an average effect of no visible injury being decreased with varied 

marginal effects magnitudes over the years. However, when this variable was defined for 
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severe injury in 2014-daytime model, it showed an opposite effect of no visible injury being 

increased (see Table 14). For the nighttime models, the pickup truck indicator was statistically 

significant in two years (2013 and 2017) with an opposite average effect of severe injury being 

decreased in 2013 and increased in 2017. The Sports Utility Vehicle (SUV) indicator was a 

statistically significant variable in all daytime models (except for 2017) showing a relatively 

consistent direction but different magnitudes of the average marginal effects over the years. 

Marginal effects in Table 14 show that SUVs increased the probability of severe injury and 

decreased the probability of no visible injury in all daytime models except 2017. For nighttime, 

SUV vehicle type was a statistically significant variable in one year (2015) with a slightly 

different average effect being an increase in moderate injury and a decrease in no visible and 

severe injuries. Clearly, larger vehicle types (Pickups and SUVs) are generally found to result 

in higher injury severity levels, likely due to heavier mass and higher frontal designs. These 

findings confirm the results of previous work by Pour-Rouholamin and Zhou (2016) and 

Mohamed (2013). However, there is also a potential selectivity issue here that could explain 

the results and their observed temporal instability. That is, the types of drivers owning these 

vehicles may change over time and this result in different effects. For example, the 2013 to 

2017 time period corresponds to a rapid increase in the vehicle market penetration of SUVs. It 

could be that the risk profiles of drivers who first join the SUV movement by buying an SUV 

differ from those who buy SUVs later. This would be reflected in a changing impact of the 

SUV indicator. A similar phenomenon has been empirically modeled in Winston et al. (2006) 

where they found that the safest drivers are attracted to vehicles with advanced safety features 

first, making the effectiveness of the safety features seem high initially, but less so as riskier 

drivers start purchasing these advanced safety-feature vehicles. Unfortunately, developing an 

econometric model to capture this selectivity issue and thus uncovers the true effect of the 

vehicle type would be extremely challenging as discussed in Mannering et al. (2020).  
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1.6.3 Roadway-related characteristics 

The traffic signal control indicator variable was statistically significant in some models 

and exhibited unstable behavior over time. Interestingly, this variable had opposite effects 

between daytime and nighttime in 2015 models with the probability of severe injury being 

lower in the daytime and higher in the nighttime when traffic signals were present (see Tables 

8 and 9).  

The no-pedestrian-signal indicator variable was a statistically significant variable in 

two models for each time of day showing some stability in daytime models while it showed an 

unstable behavior in the nighttime models. For daytime, Tables 8 and 12 show that this variable 

was statistically significant in the 2015 and 2017 models with the average effect being a 

decrease in no visible injury and an increase in moderate and severe injuries. For nighttime, 

this variable was statistically significant in 2013 and 2015 with opposite average effects in 

moderate and severe injury severities between the two years (see Tables 5 and 9). Model 

estimation results show that the low-speed limit indicator variable (30 miles per hour and less) 

was statistically significant in six models: in daytime (2014, 2016 and 2017) and nighttime 

(2015, 2016 and 2017), showing a relatively stable behavior over the years and different times 

of day. Marginal effects in Table 14 show that the average effect of this variable was to 

decrease the likelihood of severe injury in all models and increase the likelihood of no visible 

injury in all models (except for 2017-nighttime model) confirming the findings of previous 

studies.  

The multiple lanes indicator variable (3 lanes or more) was also found to have a 

consistent behavior between daytime and nighttime over the years. Marginal effects in Table 

14 show that this variable was statistically significant in two nighttime models (2013 and 2015) 

and one daytime model (2017) with the average effects being an increase in the likelihoods of 
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severe and moderate injury and a decrease in the likelihood of no visible injury. Tables 7 and 

8 show that the wet pavement indicator variable was statistically significant in two consecutive 

years but different time of day. Results in Table 14 show that this variable had opposite effects 

between daytime and nighttime in the likelihoods of no visible injury being decreased in 

nighttime accidents (in 2014) and increased during daytime accidents (in 2015). Similar to the 

findings by Zamani et al. (2021), the road surface condition variables (both wet and dry) were 

only significant in some years with somewhat unstable behavior. 

 

1.6.4 Crash-related characteristics 

The vehicle-front impact indicator variable was found to be statistically significant in 

various years and times of day with the effects being somewhat stable. For daytime models, 

marginal effects in Table 14 show that the average effects of this variable decreased the 

likelihood of no visible injury in three consecutive years (2014, 2015, and 2016) and increased 

the likelihood of severe injury in those years, except for 2016, with relatively stable 

magnitudes. For the nighttime models, this variable was found to follow the daytime effects 

for two consecutive years (2016 and 2017). The severe injury outcomes resulting from vehicle 

frontal impact is expected due to the mass transfer from a moving vehicle to a pedestrian. 

Accidents occurring on the roadway but not at an intersection were found to be a statistically 

significant fixed-parameter variable in two nighttime models and one daytime model. In 2015, 

this variable was found to be statistically significant in both times of day with similar marginal 

effects, increasing the likelihood of severe injury and decreasing the likelihoods of no visible 

and moderate injuries. This is also expected because pedestrians are less likely to be expected 

at non-intersection locations on the roadway, which may increase the reaction time of drivers 

giving them less opportunity to reduce their speeds and take evasive action before a collision. 

This conclusion is somewhat supported by the findings of some previous studies that found 
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that pedestrians suffered more severe injuries outside of crosswalks and less severe injuries in 

crosswalks (Mokhtarimousavi et al. 2020; Zamani et al. 2021) 

 

1.6.5 Driver-related characteristics 

In terms of drivers’ gender, the male driver indicator variable shows relatively unstable 

behavior across different years and times of day. In the 2013 models, this variable indicator 

increased the likelihood of severe injury in the nighttime and increased the likelihood of 

moderate injury in the daytime.  

Estimation results in Tables 4 and 12 show that the seatbelt indicator variable was 

statistically significant in two daytime models (2013 and 2017) with no significant variables in 

the nighttime models. Marginal effects in Table 14 show that the average effects of this variable 

were constant over the years in terms of direction (increasing the likelihood pedestrian severe 

injury) but lower in terms of the magnitude of the marginal effects in 2017. This seatbelt use 

variable finding suggests some compensating behavior among drivers. That is, as drivers feel 

safer (with seatbelt use) they may drive faster to keep their overall risk at roughly the same 

level, which supports the theory and findings of Peltzman (1975) and Winston et al. (2006). 

The younger driver indicator variable (less than 25 years old) was found to be a 

statistically significant fixed variable in two years but at different times of day (see Tables 6 

and 13). Marginal effects show that this variable had similar direction of the average effects in 

two different years and times of day (2014-daytime and 2017-nighttime) increasing the 

likelihoods of no visible and moderate injury and decreasing the likelihood of severe injury in 

both models, following the effects of the statistically significant random parameter of the same 

variable in 2015-nighttime model. This finding, however, contradicts the results of a previous 

study by Pour-Rouholamin and Zhou (2016) where adult drivers (16-24 years old) were found 

to increase the severe injury likelihood. 
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1.6.6 Pedestrian-related characteristics 

Results in Tables 4 through 13 show that pedestrian age was found to be a statistically 

significant variable in several years in the two times of day with a relatively consistent finding 

in terms of impact on injury-severity probabilities. The younger pedestrian indicator variable 

(less than 25 years old), for example, was statistically significant in both times of day in three 

consecutive years (2013, 2014, and 2015) with the effects of severe injury being decreased in 

all models (see Table 14). In contrast, the older pedestrian indicator (more than 55 years old) 

was found to be a statistically significant variable in two nighttime models (2013 and 2016) 

and one daytime model (2016) with the severe injury effects being increased in these models 

(see Table 14). These findings confirm the results of the recent study by Zamani et al. (2021) 

where younger pedestrians (less than 31 years) were found to decrease the likelihood of severe 

injury while older pedestrians (over 50 years) were found to increase the likelihood of severe 

injury. Age (of both drivers and pedestrians) could be a proxy of several unobserved factors 

including differences in physical characteristics, reaction time, and risk-taking behavior 

(Mannering et al., 2016). 

 

1.7 Predictive Comparisons (Prediction Simulations) 

The findings of temporal instability over the years indicate that there has been a 

fundamental shift in the effect that explanatory variables have had on resulting injury severity 

probabilities. However, from a pragmatic and predictive perspective it would be interesting to 

determine what the aggregate effect of the observed shift in the influence of explanatory 

variables has had on injury severity probabilities. That is, if parameters determined from model 

estimates based on 2014 data were used to estimate injury probabilities of crashes observed in 

2017, what would the differences be relative to actual observed 2017 injury probabilities? The 
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answer to this question can be acquired via model prediction. However, prediction with random 

parameters models must be carefully done to account for parameter variance because it can be 

readily shown that simply using the mean of the random parameter for prediction is clearly 

incorrect and will result in biased forecasts (Xu et al., 2021). Several approaches to correctly 

forecast with random parameters models are available. For within-sample prediction 

(prediction with the same observations used to estimate the model) the simulated Bayesian 

approach described in Greene (2004) can be used to determine the parameters of individual 

observations, and these individual observation parameters can then be used to provide 

individual forecasts in response to changes in explanatory variables (see Washington et al., 

2020 and Alnawmasi and Mannering, 2022 for applications of this approach). For out-of-

sample prediction (prediction for a sample of observations that was not used for model 

estimation) the parameters of individual observations will not be transferable from one group 

of observations to another (since the observations will be different in the different data sets), 

so the Bayesian parameter estimation used for within-sample prediction cannot be used. The 

prediction undertaken in the current report will be out-of-sample because estimated parameters 

from one year/day/night model will be used to forecast with the observations from a different 

year/day/night data sample. 3  As a result, for out-of-sample predictions, the estimated 

parameters from the base sample (the sample of observations used to initially estimate the 

model), including the full distribution of random parameters (based on estimated means and 

variances), must be used and applied in a simulation method similar to that used in estimating 

the model (using either Halton or random draws to compute discrete outcome probabilities).  

Thus, out-of-sample prediction can be done by simulation, numerically integrating Equation 3 

to compute individual crash injury-severity probabilities (in much the same way that Equation 

 
3 That is, year/day/night model combinations will be considered in-sample when their data is used for estimation and out-of-

sample when their data is used for prediction using the parameters estimated in a different year/day/night combination. 
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3 is integrated for model estimation). 4  Hou et al. (2022) provide a detailed explanation, 

discussion, and empirical assessment of this technique.5 

To begin the out-of-sample prediction, attention is first directed toward comparisons of 

day and night crashes. Presumably, the more severe pedestrian injury severities observed at 

night result largely from poorer visibility due to inadequate lighting relative to day conditions 

(although driver and pedestrian fatigue and other factors may also play a role). An interesting 

question would then be what would the nighttime severity distributions be if daytime parameter 

estimates were used to forecast them? The results of this out-of-sample simulation (using 

daytime models to predict nighttime injury severity given observed nighttime crash 

characteristics) is present in Table 15, which provides a summary of changes in pedestrian 

injury severity prediction means between day and night in all years from 2013 to 2017, with 

Figures 1 to 5 providing corresponding histograms of the distribution of probability differences 

for individual crash observations.6 

The overall results of the prediction simulations shown in Table 15 indicate that the 

pedestrian injury severity differences between day and night are relatively stable in terms of 

direction, but with different magnitudes. The means of injury severity outcomes in Figure 1 

show that using daytime data in 2013 to predict nighttime probabilities overestimates no visible 

and moderate injuries by 0.0260 and 0.0960, respectively, and underestimates severe injury by 

  

 
4 Some software packages offer this out-of-sample simulation for the random parameters logit model as part of a standard 

prediction routine, where the same simulation approach used for estimation is used to predict out-of-sample outcome 

probabilities. However, the simulation can be done without the use of estimation software using the approaches discussed 

and demonstrated in Hou et al. (2022). 
5 For additional information on this process, please see recent studies by Hou et al. (2021) and Xu et al. (2021) for a discussion 

of out-of-sample prediction using random parameters in the context of count-data models, and Alogaili and Mannering 

(2020), Islam et al. (2020) and Alnawmasi and Mannering (2021) for previous out-of-sample forecasts using injury severity 

models. 
6 The improved visibility resulting from daytime conditions could also result in a fundamental shift in the sample of crash-

involved drivers, since the improved visibility may allow the safest drivers to take evasive maneuvers to not only reduce 

injury severities (Fountas and Anastasopoulos, 2018) but also possibly avoid the crash completely. This results in a potential 

sample selection issue as discussed in Mannering et al. (2020), where the risk-prone characteristics of crash-involved drivers 

will vary by time of day. Given this, some caution should be exercised in interpreting the simulation findings. 
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Figure 1. Difference between the pedestrian 2013-night estimated model predicted injury 

probabilities using 2013-day data and 2013-night "observed" probabilities. 
 

 

 

 

Mean= 0.0260 

STD= 0.0250 

Mean= 0.0960 

STD= 0.2345 
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Figure 2. Difference between the pedestrian 2014-night estimated model predicted injury 

probabilities using 2014-day data and 2014-night "observed" probabilities. 
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Figure 3. Difference between the pedestrian 2015-night estimated model predicted injury 

probabilities using 2015-day data and 2015-night "observed" probabilities. 
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Figure 4. Difference between the pedestrian 2016-night estimated model predicted injury 

probabilities using 2016-day data and 2016-night "observed" probabilities. 
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Figure 5. Difference between the pedestrian 2017-night estimated model predicted injury 

probabilities using 2017-day data and 2017-night "observed" probabilities. 

 

  

  

  

 

Mean= 0.0775 

STD= 0.2897 

Mean= 0.0572 

STD= 0.3026 
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0.1220. Meaning, that daytime estimated parameters would predict more no visible and 

moderate accidents but less severe accidents than observed. Table 15 shows that injury severity 

outcomes follow this pattern in all years overestimating no visible injury and moderate injury 

(except for 2015) and underestimating severe injury. Although the direction of the predictions 

is relatively stable over the years, magnitudes of the severe injury “underestimation” in the 

recent years (2016 and 2017) are much larger, which suggests an increasing separation between 

day and night injury severities. The findings in Table 15 are important because they show, in 

some sense, the upper limit of what can be achieved by improving lighting and pedestrian 

visibility or having pedestrian detection capabilities in vehicles, since the predictions (using 

daytime parameters to predict nighttime severities) give insights as to what could be achieved 

by essentially replicating daytime conditions. The findings suggest a rather dramatic effect 

because the 0.1645 and 0.1347 reduction in severe injury probabilities in 2016 and 2017 would 

result in thousands of fewer incapacitating injuries and fatalities across the nation.7 

Table 15. Summary of changes in pedestrian injury severity prediction means between day 

and night by the year of the accident. 

 

Year  No visible Injury  Moderate Injury  Severe Injury 

2013  0.0260  0.0960  -0.1220 

2014  0.0105  0.0578  -0.0683 

2015  0.0935  -0.0607  -0.0328 

2016  0.1486  0.0159  -0.1645 

2017  0.0775  0.0572  -0.1347 

 

To study the aggregate effect of the temporal instability in day and night crashes further, 

Table 16 provides the differences between day and night forecasted probabilities and day and 

night "observed" probabilities for all years (2013-2017) using 2013 to 2016 base years. As an 

 
7 Please note that some of results in Table 15 are based on year/day/night models that were estimated with relatively few 

observations. The use of larger data bases should provide precise probability estimates. 
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Table 16. Prediction results (base year model forecasted minus observed forecast year predicted probabilities) for day and night accidents for: no 

visible injuries (first number), moderate injury (in parentheses) and severe injury (in brackets) for day and night. 

 

  

  Forecast Year 

  2014  2015  2016  2017 

Base Year  Day Night  Day Night  Day Night  Day Night 

2013 
  

-0.0679 

(-0.0066) 

[0.0745] 

  

 

-0.0207 

(-0.0572) 

[0.0779] 

  

  

-0.0746 

(0.0373) 

[0.0373] 

  

 

0.0044 

(-0.0619) 

[0.0575] 

  

  

-0.0643 

(-0.0091) 

[0.0734 

  

 

0.0561 

(-0.0949) 

[0.0388] 

  

  

-0.0172 

(-0.0305) 

[0.0477] 

  

 

0.0169 

(-0.0326) 

[0.0157] 

  

2014 
 

  

  

0.0129 

(0.0300) 

[-0.0429] 

  

 

0.0960 

(-0.0593) 

[-0.0367] 

  

  

-0.0256 

(0.0044) 

[0.0212] 

  

 

0.1394 

(-0.0698) 

[-0.0695] 

  

  

0.0293 

(-0.0024) 

[-0.0269] 

  

 

0.0811 

(-0.0180) 

[-0.0632] 

  

2015 
 

  

 

  

  

-0.0215 

(-0.0314) 

[0.0529] 

  

 

0.0356 

(0.0061) 

[-0.0417] 

  

  

-0.0091 

(-0.0269) 

[0.0360] 

  

 

0.0116 

(0.0201) 

[-0.0317] 

  

2016 
 

  

 

  

 

  

  

0.0399 

(-0.0038) 

[-0.0361] 

  

 

-0.0572 

(0.0312) 

[0.0260] 
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example of how to read Table 16, the table shows that if the 2013 nighttime model parameters 

were used to forecast 2017 nighttime injuries, no visible injuries would be overestimated (relative 

to observed injury distributions in 2017 nighttime) by 0.0169, moderate injuries would be 

underestimated by 0.0326, and severe injuries would be overestimated by 0.0157. 

The results show that 2013 daytime and nighttime models overestimate all subsequent 

years’ no visible injury while for nighttime, 2013 model overestimates subsequent years’ no visible 

injury (except for 2014). For 2014 (as a base year), the daytime model overestimates no visible 

injury severity for all subsequent years (except for 2016) while for nighttime, it follows the 

predications of 2013 base year model with higher magnitudes. 

For moderate injury severity outcomes, Table 16 shows (values in parentheses) that 2013 

daytime model underestimates all subsequent years’ moderate injury. Interestingly, moderate 

injury parameters are also underestimated in all nighttime models using 2013 model as a base year. 

However, when 2015 and 2016 nighttime models were used to predict subsequent years’ 

parameters moderate injury outcomes were overestimated. 

For severe injury severity outcomes, Table 16 shows (values in brackets) that using 2013 

models (daytime and nighttime) overestimates severe injury of all subsequent years. In contrast, 

using 2014 models (both times of day) underestimates severe injury of all subsequent years (except 

for 2016 daytime model). Overall, the findings of the prediction simulations present evidence on 

the rather substantial aggregate effect of the temporal instability of pedestrian injury severities 

over the years. 
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1.8 Pedestrian Findings Summary 

In the U.S., pedestrian fatalities have increased substantially in recent years and have been 

accounting for an increasing percentage of overall roadway-related fatalities. There are a multitude 

of reasons for why this may be happening. One possibility is that the safety advancements 

implemented in vehicles recently might be increasing drivers’ risk-taking behavior as they 

compensate for the improved safety that such advancements provide (Winston et al., 2006), 

making pedestrians at a greater risk. There is also the potential issue of increased cell phone use 

by both drivers and pedestrians, resulting in potential distractions that may result in increased 

pedestrian-injury severities. Finally, changes in vehicle fleet composition (the trend toward larger 

vehicles such as sport utility vehicles, with greater mass and potentially less pedestrian-friendly 

frontal areas) may also be playing a role in increases in pedestrian injuries. To explore these 

possibilities, the current report uses data from single-pedestrian single-vehicle crashes in Kansas 

from 2013 and 2017 and estimates a series of random parameters logit models with heterogeneity 

in the means and variances to study the relationship between the severity of pedestrian accidents 

and time of day over the years. 

Many statistically significant variables were found to affect the pedestrian injury severity 

probabilities in day and night conditions over the years studied. Some of these variables, such as 

wet pavement and traffic signal indicator variables, were found to have an opposite effect between 

day and night. Other variables were found have generally similar effects on both times of day 

including an indicator for accidents that occurred on roadway but not on intersection and the 

younger driver indicator variables. Variables that were found to increase the likelihood of severe 

injury or decrease the likelihood of no visible injury in multiple years included indicators for larger 

vehicle types (Pickups and SUVs), frontal vehicle impact, no-pedestrian sign, multiple lanes , and 
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older pedestrians. Other variables were found to decrease the severe injury outcome such as 

indicators for younger drivers, younger pedestrians, and lower speed limits. Several models 

produced a statistically significant random parameters with heterogeneity in the means which 

capture unobserved heterogeneity present in the data. 

In terms of temporal stability, the results show some differences in the behavior of specific 

indicator variables between day and night over the years. For example, indicators for younger 

drivers, older pedestrians, lower speed limits, multiple-lane roadways, and frontal vehicle impact 

were found to have a relatively stable behavior throughout the years in both times of day, while 

indicators for pickups, and SUVs, and no-pedestrian signs were found to be stable only during the 

day. While male driver and warmer-weather accident indicator variables were temporally unstable 

in both times of day, indicators for pickups and no-pedestrian sign were temporally unstable in 

nighttime models.  

Predictive comparison results show some evidence of temporal stability between day and 

night predictions where using daytime parameter estimates to predict nighttime probabilities 

overestimates no visible injury and underestimates severe injury in all studied years. However, 

when predicting the probabilities of each time of day in several subsequent years, there was a 

variation in the prediction simulation results that show clear evidence of temporal instability 

throughout the years. 

The results of this study also show a clear evidence that factors that affect pedestrians’ 

injury vary significantly between day and night conditions but suggest that severe pedestrian 

injuries could be reduced by replicating day conditions at night through improved illumination, 

pedestrian detection systems in vehicles, and methods to mitigate potential driver fatigue at night. 



 

 

55 

 

Policies along these lines could potentially result, annually, in thousands of fewer incapacitating 

injuries and fatalities across the nation. 

More importantly, the results underscore the need to account for unobserved heterogeneity 

in the analysis of crash data. The strong statistical significance of random parameters is a clear 

indication that unobserved effects relating to missing attitudinal and behavioral data are playing 

an important role. Because current highway safety practice (AASHTO, 2010) ignores these 

unobserved effects, erroneous conclusion and inferences may be drawn. The findings in this part 

of the report clearly underscore the need to consider unobserved effects in statistical estimation, 

through the use of mixing distributions, to account for missing data which includes, among other 

concerns, the safety-related attitudes of road users. 
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Part II 

An assessment of no-injury and injury crash occurrences: Bivariate 

versus univariate models with alternate random parameters 

structures 
 

 

2.1 Introduction and literature review 

The Highway Safety Manual (AASHTO, 2010) has become the mainstay of safety analysis 

in the United States. However, the current version of the manual uses traditional statistical methods 

with no way of capturing the effect of motorist attitudes and unobserved behavioral elements of 

highway safety. This can potentially lead to biased estimates of model parameters as well as 

inaccurate inferences on the effectiveness on the safety features and/or policies that analysts wish 

to explore. Moreover, the structure of the statistical models used in the Highway Safety Manual 

(commonly referred to by the acronym HSM) often overlooks potentially important correlations 

among the frequencies of injury severities on roadway segments. This can lead to further 

inaccuracies in policy assessment. The intent of this portion of the report is to demonstrate an 

additional application of mixing distributions, in this case to both the frequency of crashes as well 

as their resulting injury severity (the preceding portion of this report focused exclusively on injury 

severity in its application of mixing distributions). 

This portion of the report focusses on identifying the factors affecting the frequencies of 

non-injury and injury crashes on freeways. Poisson models are one of the early models used in 

crash frequency modeling. An inherent restriction of mean and variance for dependent variable to 

be equal in Poisson models results in invalid results when this condition is violated. Negative 

binomial models relax the condition of equal mean and variances and can effectively take care of 

this over-dispersion problem. Since the crashes are rare events and the crash data commonly 

consists of excess zeroes, both Poisson and negative binomial models result in biased results when 
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used for datasets with excess zeroes.  First approach in the literature to overcome the issue involves 

zero-inflated Poisson and zero-inflated negative binomial models. These models assume that the 

road locations exist in one of the dual states (zero state and non-zero state) in relation to the crashes 

(Shankar et al., 1997; Lee and Mannering, 2002; Lord et al., 2007; Malyshkina and Mannering, 

2010). However, these models prioritize the statistical fit instead of explaining the crash occurrence 

process. A drastic improvement in computation power in the recent decades helped the safety 

researchers to conduct advanced studies with larger datasets and more complex models. 

Malyshkina et al. (2009) and Malyshkina and Mannering (2010) proposed a two state Markov 

switching model to allow road locations to change in time from one state to another. 

Second approach to account for excess zeroes in the crash dataset is by considering a new 

distribution which can address lower counts and combining it with the parent Poisson and Negative 

binomial distributions. Recently developed models with such distributions are Poisson-Lindley, 

negative binomial-Lindley and negative binomial generalized exponential. Unobserved 

heterogeneity due to other sources is another issue in the count models. Unobserved heterogeneity 

can be classified into structured and unstructured. Structured heterogeneity can be due to temporal 

correlations as commonly seen in panel data where multiple observations are recorded over time. 

Random effects Poisson and Negative binomial models are commonly used to account for 

structured heterogeneity. The unstructured heterogeneity can be due to uncertainty in covariates 

and omitted variables. Ignoring such heterogeneity can lead to bias in parameter estimates and 

results in incorrect inferences from the model. Random parameters models address the 

heterogeneity by assuming a distribution for parameters and allowing the parameters to vary across 

observations. Table 17 summarizes the studies which used random parameters models for crash  
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Table 17. Summary of empirical studies that used univariate random parameters count models in accident research. 

 
Study Abbreviation(s) of model(s) 

considered 

Outcome response count 

variable 

Major findings/contributions from methodological standpoint 

Anastasopoulos and 

Mannering (2009) 

Fixed parameters negative 

binomial model and random 

parameters negative binomial 

model. 

5 years motor vehicle crash 

frequency. 
• Random/fixed parameters negative binomial are statistically 

better than the random/fixed parameters Poisson models.  

• Random parameters negative binomial model is statistically 

superior to fixed parameters negative binomial model at more 

than 99.99% confidence level.  

Venkataraman et al. 

(2011) 

Fixed parameters negative 

binomial model and random 

parameters negative binomial 

model. 

Interstate crash frequency. • Random parameters negative binomial model significantly 

improved the likelihood value and statistically better 

compared to the fixed parameters negative binomial model.  

Ukkusuri et al. 

(2011) 

Random parameters negative 

binomial model 

Severe and fatal pedestrian-

vehicle crash frequency.  
• Random parameters negative binomial model has significant 

improvement in the likelihood value compared to restricted-

at-zero model.  

Venkataraman et al. 

(2013) 

Fixed parameters negative 

binomial model and random 

parameters negative binomial 

model. 

Interstate crash frequencies by 

crash severity, number of vehicles 

involved, collision and location 

type.  

• Except for head on collisions, random parameters negative 

binomial model models have statistically better fit than their 

corresponding fixed parameters negative binomial model. 

Mohammadi et al. 

(2014) 

Random parameters negative 

binomial model and Random 

effects negative binomial 

model.  

Interstate highway crash 

frequency. 
• Random parameters negative binomial model fits data better 

but the random effects negative binomial model has slightly 

better predictive power because of fewer parameters in the 

model.  

Coruh et al. (2015) Correlated Random 

parameters Poisson model, 

uncorrelated random 

parameters Poisson model, 

correlated random parameters 

negative binomial model and 

uncorrelated random 

parameters negative binomial 

model. 

Monthly crash frequency on 

highways across Turkey. 
• Random parameters negative binomial models are statistically 

superior to the random parameters Poisson models.  

• Correlated random parameters models outperformed their 

corresponding uncorrelated models. 

Caliendo et al. 

(2015) 

Fixed parameters negative 

binomial model and random 

parameters negative binomial 

model. 

Severe crash frequency in tunnels.  • Random parameters negative binomial model could not 

outperform the fixed parameters negative binomial model for 

tunnel crash data.  
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Naznin et al. (2016) Random parameters negative 

binomial model and Random 

effects negative binomial 

model. 

Tram involved injury crash 

frequency. 
• Random effects negative binomial model is statistically better 

than the fixed parameters negative binomial model in terms of 

data fit.  

Kamla et al. (2016) Fixed parameters negative 

binomial model and random 

parameters negative binomial 

model. 

11-year number of roundabout 

crash counts. 
• Random parameters negative binomial model provided better 

data fit than fixed parameters negative binomial model. 

Rusli et al. (2017) Random parameters negative 

binomial model. 

Monthly single vehicle crash 

counts 

 

Rusli et al. (2018) Random parameters negative 

binomial model, random 

parameters negative 

binomial-Lindley model and 

random parameters negative 

binomial – generalized 

exponential model. 

Multivehicle crash counts on 

mountainous highways. 
• Random parameters negative binomial-Lindley outperformed 

random parameters negative binomial model and random 

parameters negative binomial – generalized exponential 

model in terms of prediction ability and model fit.  

Shaon et al. (2018) Negative binomial – Lindley, 

and random parameters 

negative binomial model, and 

random parameters negative 

binomial-Lindley model. 

Crash frequency on rural 

interstate sections and two-lane 

rural roadway sections.  

• Random parameters negative binomial-Lindley model 

performed statistically better fit compared to negative 

binomial – Lindley and random parameters negative binomial 

models  

• Random parameters negative binomial-Lindley model offered 

better understanding about the effects of potential underlying 

factors.  
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frequencies. Anastasopoulos and Mannering (2009), Venkataraman et al. (2011), Venkataraman et 

al. (2013), and Kamla et al. (2016) found that random parameters models are statistically superior 

to the fixed parameters in terms of data fit. However, Caliendo et al. (2015) found that random 

parameters models could not perform better than the fixed parameters for tunnel crash frequency 

data.  

Interactions between the factors affecting the crashes could arise due to unknown sources 

and ignoring such interactions may result in inaccurate inferences. Correlated random parameters 

models can effectively capture such interactions and may provide better data fit than the 

uncorrelated random parameters models.  Table 18 summarizes the existing correlated random 

parameters models used for modeling crash frequency modeling. Studies by Coruh et al. (2015), 

Hou et al. (2018), Caliendo et al. (2019), Huo et al. (2020) and Tang et al. (2020) found that 

correlated random parameters models provide statistically better fit than the uncorrelated models. 

However, Venkataraman et al. (2011) and Saeed et al. (2019) found that correlated random 

parameters models couldn’t perform better than the uncorrelated random parameters models. Table 

19 summarizes the random parameters models with heterogeneity in means and variances.  

Instead of modeling the total crashes including no-injury and injury crashes, developing 

separate models provide more insights about the factors affecting different injury crashes. Since 

the factors affecting different injury crashes are correlated, estimating separate models may lead 

to incorrect inferences. Bivariate/multivariate models address this issue by modeling different 

injury crashes simultaneously. Table 20 summarizes the existing studies which used bivariate and 

multivariate models. Dong et al. (2014), Dong et al. (2017), Barua et al. (2015), Chen et al. (2017), 

Liu et al. (2018), Bhownik et al. (2019) and Wang et al. (2020) found that multivariate models are 

statistically better than the univariate models in terms of data fit.  
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Table 18. Summary of empirical studies that used correlated random parameters count models in accident research. 

Study Abbreviation(s) of model(s) 

considered 

Outcome response count 

variable 

Major findings/contributions from methodological standpoint 

Venkataraman et al. 

(2011) 

Fixed parameters negative 

binomial model, Uncorrelated 

Random parameters negative 

binomial model and Correlated 

Random parameters negative 

binomial model. 

Total annual crash frequency on 

interstate segments. 
• Random parameters negative binomial models provided a better fit 

for observed crash frequency than fixed parameters negative 

binomial model. 

• Uncorrelated random parameters negative binomial yielded the best 

likelihood when compared to Correlated random parameters negative 

binomial models. 

Coruh et al. (2015) Fixed parameters negative 

binomial model, Uncorrelated 

Random parameters negative 

binomial model and Correlated 

Random parameters negative 

binomial model. 

Monthly crash frequency on 

highways across Turkey. 
• The statistical superiority (high to low) of models in terms of data fit 

is correlated random parameters negative binomial model, 

uncorrelated random parameters negative binomial model and fixed 

parameters negative binomial model. 

• Random parameters models outperform very well in terms predicting 

monthly crash frequencies. 

Hou et al. (2018) Random effects negative binomial 

model, uncorrelated random 

parameters negative binomial 

model and correlated random 

parameters negative binomial 

model. 

Annual crash frequency in 

tunnels. 
• Uncorrelated random parameters negative binomial model provided 

better data fit compared to random effects negative binomial model.  

• Correlated random parameters negative binomial model 

outperformed uncorrelated random parameters negative binomial 

model and provided better goodness-of-fit and more insights on 

factors affecting the tunnel safety.  

Caliendo et al. (2019) Random effects Poisson model, 

uncorrelated random parameters 

Poisson model and correlated 

random parameters Poisson 

models. 

Annual crash frequency in 

motorway tunnels. 
• Correlated random parameters Poisson model provided a better data 

fit when compared to uncorrelated random parameters Poisson model 

and random effects Poisson model.  

Saeed et al. (2019) Fixed parameters negative 

binomial model, uncorrelated 

random parameters negative 

binomial model and correlated 

random parameters negative 

binomial model. 

3-years injury crash and no-injury 

crash frequency on multilane 

highways. 

• For both no-injury and injury crash frequencies, uncorrelated random 

parameters negative binomial models outperform their Fixed 

parameters negative binomial counterpart models. 

• Interestingly, correlated random parameters negative binomial 

models did not provide statistically better data fit than the 

corresponding uncorrelated random parameters negative binomial 

models. 

Tang et al. (2020) Fixed parameters negative 

binomial model, Fixed Parameters 

Negative Binomial-Lindley model, 

Uncorrelated random parameters 

negative binomial- Lindley model 

and correlated random parameters 

negative binomial-Lindley model. 

Annual crash frequency in 

tunnels. 
• The statistical superiority (high to low) of models in terms of data fit 

is correlated random parameters negative binomial-Lindley model, 

uncorrelated random parameters negative binomial- Lindley model 

Fixed Parameters Negative Binomial-Lindley model and Fixed 

parameters negative binomial model.  
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Table 19. Summary of empirical studies that used heterogeneity-in-means count models in accident research. 

 
Study Abbreviation(s) of model(s) considered Outcome response count 

variable 

Major findings/contributions from 

methodological standpoint 

Venkataraman et al. 

(2014) 

 Heterogeneity-in-means random 

parameter negative binomial model and 

fixed parameters negative binomial.  

Interchange and non-interchange 

crash frequencies.   
• Heterogeneity-in-means random parameter 

negative binomial model is statistically 

superior to the fixed parameters negative 

binomial model in terms of data fit.   

Huo et. al. (2020) Random parameters negative binomial 

model and correlated random parameter 

negative binomial with heterogeneity in 

means models.  

4-years crash counts on 

mountainous freeways. 
• correlated random parameter negative 

binomial with heterogeneity in means model 

provided statistically better fit than the 

Random parameters negative binomial model 

at 99% level of confidence.  

Huo et al. (2020) Heterogeneity-in-means and variances 

random parameter negative binomial 

model, Random parameters negative 

binomial model and negative binomial 

model. 

Multilane mountainous freeway 

crash frequency. 
• Statistical superiority (high to low) of models 

in terms of data fit is Heterogeneity-in-means 

and variances random parameter negative 

binomial, random parameter negative 

binomial model, and negative binomial model.  

• Heterogeneity-in-means and variances random 

parameter negative binomial model and 

Random parameters negative binomial model 

are less precise than the negative binomial 

models when applied to out-of-sample data.   
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Table 20. Summary of empirical studies that used bivariate and multivariate count models in accident research. 

 
Study Abbreviation(s) of model(s) 

considered 

Outcome response count 

variable 

Major findings/contributions from methodological 

standpoint 

Dong et al. (2014) Multivariate negative binomial 

model, multivariate zero inflated 

negative binomial model and 

multivariate random parameters 

zero inflated negative binomial 

model.  

Car-only, car-truck and truck only 

crash frequencies at urban 

signalized intersections. 

• The statistical superiority (high to low) of models in 

terms of data fit is multivariate random parameter zero 

inflated negative binomial model, multivariate zero 

inflated negative binomial and multivariate negative 

binomial model.  

• Multivariate random parameter zero inflated negative 

binomial model predicts better than the multivariate zero 

inflated negative binomial model.  

Barua et al. (2016) Multivariate Random Parameters 

model with Heterogenous 

effects, Multivariate Random 

Parameters model with Spatial 

Heterogeneity, Multivariate 

Random Parameters model with 

Heterogenous effects and Spatial 

Heterogeneity and Univariate 

Random Parameters model with 

Heterogenous effects and Spatial 

Heterogeneity.  

No-injury and Injury crash 

counts. 
• All three Multivariate models are comparable, and no 

model can be preferred over other. 

• Multivariate spatial models outperformed separate 

univariate spatial models in terms of goodness-of-fit.  

Dong et al. (2017) Multivariate zero inflated 

Poisson model, multivariate 

random parameter zero inflated 

Poisson model, multivariate 

random parameter negative 

binomial model, multivariate 

random parameter zero inflated 

negative binomial model. 

Property damage only, possible 

injury, non-disabling, disabling 

and fatal crash frequencies at 

urban signalized intersections. 

• multivariate random parameter zero inflated Poisson and 

multivariate random parameter zero inflated negative 

binomial models performed better than the multivariate 

random parameter negative binomial model in terms of 

data fit.  

• Multivariate random parameter zero inflated Poisson 

model provided better data fit in comparison to 

multivariate random parameter zero inflated negative 

binomial model. 

Chen et al. (2017) Five separate multivariate 

random parameters negative 

binomial models for segments 

with poor, fair, fair to good, 

good, and excellent pavement 

condition.  

Fatal, injury and no-injury crash 

counts. 
• Likelihood ratio tests suggests that estimating different 

models based on pavement condition is better than a 

model for whole data. 
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Liu et al. (2018) Multivariate random parameter 

zero inflated negative binomial 

model, Multivariate Poisson 

Log-Normal model, random 

parameters zero inflated Poisson 

model, random parameters zero 

inflated negative binomial 

models, multivariate zero 

inflated Poisson, multivariate 

zero inflated negative binomial 

model and multivariate zero 

inflated Poisson. 

Annual sideswipe crash counts, 

annual rear end crash counts and 

annual other crashes.  

• Compared to all other models, Multivariate random 

parameter zero inflated negative binomial model is 

statistically superior. 

• Multivariate zero inflated models are statistically superior 

to multivariate Poisson/negative binomial models. 

• Multivariate zero inflated Poisson/negative binomial 

models are more complex but fit the data better.  

• Multivariate models could estimate parameters more 

accurately than univariate models.  

• Multivariate Poisson Log-Normal model performed 

worse than all other multivariate zero inflated models.  

Bhowmik et al. 

(2019) 

Negative binomial, random 

parameters multivariate negative 

binomial, independent panel 

negative binomial model and 

mixed panel negative binomial 

model.  

Rear end, angular, sideswipe, all 

single vehicle, other multiple 

vehicle, and non-motorized crash 

counts.  

• Independent panel negative binomial and mixed panel 

negative binomial models are statistically superior to the 

negative binomial and random parameters multivariate 

negative binomial models respectively.  

• Mixed panel negative binomial model provided better fit 

than the independent panel negative binomial model.  

• Similarly, random parameters multivariate negative 

binomial model performed better than the negative 

binomial model. 

Wang et al. (2020) Univariate negative binomial 

model, univariate Poisson 

model, multivariate zero inflated 

negative binomial model, 

multivariate zero inflated 

Poisson, random parameter 

multivariate negative binomial 

and random parameter 

multivariate Poisson models. 

Rear-end, bumping guard rail, 

non-casualty, casualty, and other 

crashes.  

• Zero inflated models are not suitable for the data used in 

the study.  

• random parameters multivariate negative binomial model 

is statistically superior to the random parameters 

multivariate Poisson model only for rear end, non-

casualty, casualty, and other crashes. 
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2.2 Methodology 

Crash frequency data represent the number of crashes occurred in a given period (one year) 

and are usually modeled using count data modeling techniques. Poisson models and its derivatives 

including zero-inflated models and negative binomial models are commonly used in count data 

modeling. According to the Poisson model, the probability P(ni) of road segment i having ni 

crashes in a given period of time is denoted by 

( )
( )
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P n

n
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=      
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Where i is the expected number of crashes (E(ni)) for road segment i. According to the Poisson 

regression, i is represented as a function of explanatory variables using a log-linear function: 

( )i iEXP= βX      (8) 

Where Xi is a vector of explanatory variables and β is a vector of estimable parameters. The major 

limitation for Poisson model is that the mean and variance are equal (E[ni] = Var[ni]) for Poisson 

distribution. This condition may not hold true in all cases especially for over or under dispersed 

data. Using Poisson model for over/under dispersed data may results in the inaccurate estimation 

of standard errors and therefore incorrect inferences could be drawn. Negative binomial model 

addresses this issue effectively and equation (8) is rewritten as  

(  )i i iEXP = + βX      (9) 

Where, EXP(i) is a gamma-distributed error term with mean 1 and variance . The negative 

binomial probability density function is:  
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Where (.) is a gamma function. As  approaches zero, the negative binomial model converges to 

Poisson model. To account for heterogeneity due to unobserved factors, random parameters are 

generally used for Poisson/negative binomial models. In random parameters count model, the 

estimable parameters are expressed as 

i i = +       (11) 

Where i is a randomly distributed term such as normally, triangular, or uniformly distributed. For 

a random parameters model, equation (2) and equation (3) changes to i|i = EXP(βXi) and i|i 

= EXP(βXi + i) respectively. The log-likelihood function can be written as  

ln ( )P( | ) 

i

i i i i

i

LL g n d
 

=             (12) 

Where g(.) is the probability density function of the i. Most popular simulation based maximum 

likelihood method can be exercised and 1000 Halton draws are used in this report. Another more 

sophisticated approach to capture the unobserved heterogeneity is by allowing the mean and 

variances of random parameters vary by explanatory variables. Heterogeneity in the means of 

random parameters is introduced by specifying the βi as  

i i i= + +β ΘZ      (13) 

where β is the mean parameter estimate across all observations, Zi is a vector of explanatory 

variables for an individual “i” which effects the mean of βi,  is a vector of estimable parameters 

and i is a vector of randomly distributed terms. Heterogeneity in the variances of random 

parameters can also be introduced as (Washington et al., 2020) 

+ + ( )i i i i i iEXP=   β ΘZ ψ W          (14) 

Wi is a vector of explanatory variables which captures the heterogeneity in standard deviation i 

of random parameters and i is the corresponding parameter vector. 
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Instead of modeling the non-injury and injury crash counts separately, a bivariate random 

parameters negative binomial model is used to model them simultaneously. According to the 

Winkelmann (2008), the expected number of crashes in bivariate negative binomial model can be 

expressed as 

    (  )ik k ik ikEXP = + β X         (15) 

Where k represents the non-injury and injury severity levels, ik is the expected number of kth level 

severity crashes in ith road segment, Xik is the vector of independent variables, βk is the vector of 

coefficients, and EXP(ik) is gamma distributed error term with mean 1 and variance .  If  is not 

significantly different from 0, Poisson model is preferred over negative binomial model. 

Contrast to univariate negative binomial model, the error term ik is multivariate error term 

which is based on unstructured correlated covariance matrix: 

2

1 1 2 12

2

2 1 21 2

 = 
    

  
    

     (16) 

Where 1, 2 are standard deviations of error terms for non-injury and injury crashes. 12 is the 

correlation between the two error terms.  

As discussed in the methodology section for univariate model for total crashes, restricting 

the effect of explanatory variables to be fixed for all observations may not appropriate and may 

results incorrect inferences. Instead, parameters are random and vary for different observations 

according to  

  + n n =          (17) 

where n is a randomly distributed term (mixing distribution) and is typically assumed to be 

normally distributed with mean 0 and variance 2 (Washington et al., 2020) 
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2.3 Data 

Data for this portion of the study is collected from 5 states including Georgia, Hawaii, 

Minnesota, Ohio, and Virginia. A total road stretch of 164.8 miles is divided into 728 homogenous 

sections based on their geometric characteristics and the resulting sections vary in length from 80 

feet to 1.27 miles. Too smaller sections with length less than 0.1 miles are removed for estimation 

purposes and it resulted in a total of 478 sections. The number of injury and non-injury crashes 

occurred in these sections are observed for different time frames ranging from 1 year to 5 years. 

Variables available for estimation process are section related variables such as segment length, 

average annual daily traffic, number of lanes per section, inside and outside shoulder widths, 

proportion of section with inside and outside rumble strips, proportion of section with outside and 

inside barrier, offset to inside and outside barrier, distance to the nearest downstream exit ramp 

and upstream entrance ramp, average annual daily traffic of downstream exit ramp and upstream 

entrance ramp. All the available variables are tested in the modeling process and the descriptive 

statistics of statistically significant variables in the estimated models are presented in Table 21. 

 

2.4 Estimation Results  

The estimation results of heterogeneity in means random parameters negative binomial 

model8 for total crashes obtained after extensive specification testing are presented in Table 22. 

Statistically significant dispersion parameter in Table 22 suggests that considering negative 

binomial model is more appropriate over Poisson regression model. The mean parameter for 

shoulder width is negative suggesting that an increase in the shoulder width more likely reduces 

 

 
8 Heterogeneity in the variances of random parameters is tested extensively but none of the variables are statistically 

significant. Similarly, correlations between the random parameters are turned out to be statistically insignificant.  
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Table 21. Descriptive statistics of variables used for modeling the crash frequencies on interstates. 

 

Variable description Mean 
Standard 

deviation 

Shoulder width in feet 9.67 3.46 

Georgia state indicator (1 if the section is in Georgia, 0 

otherwise) 

0.09 0.28 

Hawaii state indicator (1 if the section is in Hawaii, 0 

otherwise) 

0.07 0.26 

Ohio state indicator  

(1 if the section is in Ohio, 0 otherwise) 

0.26 0.44 

Logarithm of section length in miles -1.39 0.59 

Logarithm of number of years the section is active 1.55 0.20 

Logarithm of lane AADT 4.04 0.43 

Proportion of section with outside rumble strip 0.28 0.43 

Width of inside center barrier in feet 2.65 3.44 

Distance from the nearest downstream exit ramp in miles -0.69 1.14 

 

 

the frequency of crashes. However, two variables, Georgia and Hawaii state indicators found to 

have different effects on the mean of the random parameter for shoulder width. A positive 

parameter estimate for Georgia state indicator suggests that an increase in shoulder width has lesser 

impact on reducing the crash frequency compared to other states (Minnesota, Ohio, and Virginia). 

Conversely, an increase in shoulder width has higher impact on reducing crash frequency in Hawaii 

when compared to the other states. 

The parameter for logarithm of lane AADT is positive, suggesting that an increase in the 

lane AADT may more likely result in the higher crashes on interstates. A positive parameter 

estimate of Ohio state indicator suggests that the number of crashes are more likely to be higher in 

Ohio when compared to other states. Rumble strips are found to improve the road safety in the  
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Table 22. Estimation results of random parameters negative binomial model with heterogeneity in mean for 

total crash counts on interstates. 

 

Variables Parameter 

Estimates 

t-statistic Marginal 

effect 

Random parameter (normally distributed)    

Constant 

(Standard deviation of parameter distribution) 

-3.535 

(0.52) 

-8.50 

(21.18) 

 

Heterogeneity in the mean of random parameter 

Constant: Georgia state indicator (1 if the section is in 

Georgia, 0 otherwise) 

Constant: Hawaii state indicator (1 if the section is in 

Hawaii, 0 otherwise) 

 

-1.175 

 

-0.705 

 

-8.21 

 

-2.90 

 

Random parameter (normally distributed)    

Shoulder width in feet 

(Standard deviation of parameter distribution) 

-0.04 

(0.037) 

-4.24 

(15.79) 

-0.90 

Heterogeneity in the mean of random parameter    

Shoulder width in feet: Georgia state indicator  

(1 if the section is in Georgia, 0 otherwise) 

0.038 2.34  

Shoulder width in feet: Hawaii state indicator  

(1 if the section is in Hawaii, 0 otherwise) 

-0.088 -3.13  

Fixed parameters    

Logarithm of section length in miles 1.084 25.57 10.80 

Logarithm of number of years the section is active 1.042 7.30 6.42 

Logarithm of lane average annual daily traffic 1.674 25.12 1.87 

Ohio state indicator  

(1 if the section is in Ohio, 0 otherwise) 

0.666 8.09 23.64 

Proportion of section with outside rumble strip -0.372 -4.52 -0.11 

Width of inside center barrier in feet 0.019 2.52 0.55 

Logarithm of distance from the nearest downstream 

exit ramp in miles 

0.106 4.94 4.1 

Dispersion parameter 5.397 11.32  

Number of observations 478 

Log-likelihood at convergence -1894.14 

Constants only log-likelihood -2106.54 
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existing safety literature and the negative parameter estimate for proportion of section with outside 

rumble strip suggest that an increase in the percentage of rumble strips in a section may more likely 

reduce the number of crashes. Conversely, the number of crashes is more likely to increase with 

an increase in the width of center barrier. Surprisingly, an increase in the distance from downstream 

exit ramp more likely to increase the crash frequency. 

The marginal effect of each variable on crash frequency is presented in the Table 22. It is 

important to note that increments used for computing marginal effects are different for each 

variable. Marginal effect of shoulder width is -0.9 implying that a 1-foot increase in the shoulder 

width may result in an average decrease of 0.9 crashes in a section. A 0.1-mile increase in the 

section length may result in 10.80 more crashes on average. A 1-year increase in the observation 

period may result in 6.42 more crashes on average. Similarly, a 1,000 increase in the lane AADT 

may result in 1.87 more crashes. A section in Ohio is more likely to have 23.64 more crashes than 

other states.  A 1 percent or 0.01 increase in the proportion of section with outside rumble strip 

may result in 0.11 fewer crashes in a section. A 1-foot increase in the width of inside center barrier 

may result in 0.55 more crashes in a section. Finally, a 1-mile increase in the distance to the 

downstream exit ramp may result in 4.1 more crashes.  

Figure 6 presents the predicted counts by random parameters negative binomial plotted 

against the actual observed counts. The random parameters model can decently predict the crash 

counts until 90 crashes but it consistently underpredicts the counts there after for higher crash 

counts.  
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Figure 6. Observed counts versus predicted counts by random parameters negative binomial model 

with heterogeneity in mean for total crashes. 

 

Estimation results of bivariate random parameters negative binomial model are presented in Table 

23. Two variables, shoulder width and distance from the nearest downstream exit ramp, are found 

to have normally distributed random parameters for both non-injury and injury crashes. The mean 

of the parameter estimate for shoulder width is negative suggesting that an increase in the shoulder 

width reduces the frequencies of both non-injury and injury crashes. Similarly, with an increase in 

the distance from downstream exit ramp increases the frequencies of non-injury and injury crashes. 

Like the univariate model for total crashes, the parameter estimates are close to one for logarithm 

of section length and logarithm of number of years the section is active.  

When it comes to geographical states, Hawaii is more likely to have fewer non-injury 

crashes when compared to Georgia and Minnesota. However, Ohio and Virginia states are found 

to have higher non-injury and injury crashes that those in Georgia and Minnesota states. As rumble 

strips are widely known to reduce the crashes, Table 23 suggests that increase in the proportion of 

section with rumble strips tend to reduce both the non-injury and injury crashes. Moreover, an  
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Table 23. Estimation results of random parameters bivariate negative binomial model for non-injury and injury crash counts on 

interstates. 
 

Variables 

Non-injury crashes Injury crashes 

Coefficient  

(t-statistic) 
Marginal effect 

Coefficient  

(t-statistic) 
Marginal effect 

Constant -4.01 (-7.16) - -6.05 (-8.83) - 

Random parameters (normally distributed)         

Shoulder width in feet -0.03 (-2.87) -0.39 -0.03 (-2.59) -0.08 

Standard deviation of parameter estimate 0.05 (14.69) - 0.04 (10.19) - 

Distance from the nearest downstream exit ramp in miles 0.01 (0.20) 0.87 0.01 (0.25) 0.08 

Standard deviation of parameter estimate 0.32 (9.46) - 0.23 (6.18) - 

Fixed parameters         

Logarithm of lane average annual daily traffic 1.38 (15.79) 0.20 1.32 (12.32) 0.03 

Logarithm of section length in miles 0.98 (18.03) 3.28 0.95 (16.04) 0.56 

Logarithm of number of years the section is active 1.08 (5.83) 10.57 1.34 (5.75) 2.45 

Hawaii state indicator (1 if the section is in Hawaii, 0 otherwise) -1.42 (-8.55) -14.89 - - 

Ohio state indicator (1 if the section is in Ohio, 0 otherwise) 1.17 (10.98) 31.17 1.14 (9.87) 5.57 

Virginia state indicator (1 if the section is in Virginia, 0 otherwise) 0.46 (5.59) 9.52 0.70 (8.1) 2.67 

Proportion of section with outside rumble strip -0.43 (-4.04) -0.08 -0.47 (-4.24) -0.016 

Width of inside center barrier in feet 0.02 (1.93) 0.38 - - 

Logarithm of upstream entrance ramp average annual daily traffic - - 0.09 (1.95) 1.04 

Overdispersion parameter 2.92 (11.93) - 2.95 (9.86) - 

Number of observations 478 

Log-likelihood at convergence -3094.048 

Log-likelihood with constant only -3473.833 

Cross-equation error correlation (t-statistic) 0.816 (189.98) 
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increase in the width of center barrier tend to increase the likelihood of non-injury crashes and 

have no significant impact on injury crashes. Finally, an increase in the average annual daily traffic 

of upstream entrance ramp may likely increase the number of injury crashes and have no 

significant impact on non-injury crashes. Marginal effects are presented in Table 23 and they are 

computed with same increments as those in the univariate random parameters model for total 

crashes in Table 22. Figure 7 and Figure 8 shows the actual observed counts versus the predicted 

crash counts for non-injury and injury crashes respectively. Like the univariate model for total 

crashes, the bivariate model is decently predicting the crashes for smaller counts and consistently 

under predicts for the higher crash counts.  Figure 7 and Figure 8 shows the frequency distribution 

of differences between predicted crash counts and actual crash counts. Both the figures suggest 

that bivariate model is slightly over predicting the counts for both non-injury and injury crashes. 

Cross-equation error correlation of 0.816 with a very high t-statistic suggests that 

considering bivariate models over two univariate models is more appropriate. However, two 

separate univariate models are estimated for non-injury and injury crashes as shown in Table 24 

and Table 25 respectively. The predicted versus observed count for non-injury and injury crash 

counts are presented in Figure 9 and Figure 10, respectively. Both figures suggest that univariate 

models are decently predicting only for the non-injury and has poor performance for predicting 

the injury crashes. Figure 11 and Figure 12 presents the frequency distribution of predicted minus 

observed counts for non-injury and injury crash counts respectively. According to both figures, 

univariate models is over predicting both the non-injury and injury crash counts.  
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Figure 7: Observed counts versus predicted counts by random parameter bivariate negative 

binomial model for non-injury crashes. 
 

 

 
Figure 8. Observed counts versus predicted counts by random parameters bivariate negative 

binomial model for injury crashes. 
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Table 24. Estimation results of Random Parameters Negative binomial model heterogeneity in mean for 

non-injury crash counts on interstates. 

 

Variables 
Parameter 

Estimates 

t-statistic Marginal 

effects 

Random parameter (normally distributed)    

Constant 

(Standard deviation of parameter distribution) 

-3.459 

(0.611) 

-8.79 

(25.77) 

 

Heterogeneity in the mean of random parameter 

Constant: Georgia state indicator  

(1 if the section is in Georgia, 0 otherwise) 

Constant: Hawaii state indicator  

(1 if the section is in Hawaii, 0 otherwise) 

 

-1.132 

 

-1.303 

 

-8.36 

 

-5.30 

 

Random parameter (normally distributed)    

Shoulder width in feet 

(Standard deviation of parameter distribution) 

-0.039 

(0.036) 

-4.57 

(15.98) 

-0.59 

Heterogeneity in the mean of random parameter    

Shoulder width in feet; Georgia state indicator  

(1 if the section is in Georgia, 0 otherwise) 

0.042 2.68  

Shoulder width in feet; Hawaii state indicator  

(1 if the section is in Hawaii, 0 otherwise) 

-0.089 -3.00  

Fixed parameters    

Logarithm of section length in miles 1.095 27.61 7.76 

Logarithm of number of years the section is active 0.947 7.11 4.13 

Logarithm of lane average annual daily traffic 1.599 25.19 1.31 

Ohio state indicator  

(1 if the section is in Ohio, 0 otherwise) 

0.697 8.83 17.69 

Proportion of section with outside rumble strips -0.369 -4.66 -0.075 

Width of inside center barrier in feet 0.019 2.71 0.41 

Logarithm of distance from the nearest downstream 

exit ramp in miles 

0.091 4.44 2.49 

Dispersion parameter 7.353 9.57  

Number of observations 478 

Log-likelihood at convergence -1740.03 

Constants only log-likelihood -1941.57 
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Table 25. Estimation results of Random Parameters Negative binomial model with heterogeneity in means 

for injury crash counts on interstates. 

 

Variables Parameter 

Estimates 

t-statistic Marginal 

effects 

Constant -5.853 -8.30  

Random parameter (normally distributed)    

Shoulder width in feet 

(Standard deviation of parameter distribution) 

-0.012 

(0.025) 

-0.93 

(6.39) 

-0.52 

Heterogeneity in the mean of random parameter    

Shoulder width in feet: Georgia state indicator  

(1 if the section is in Georgia, 0 otherwise) 

-0.054 -3.73  

Shoulder width in feet: Hawaii state indicator  

(1 if the section is in Hawaii, 0 otherwise) 

-0.097 -4.30  

Fixed parameters    

Logarithm of section length in miles 0.973 14.40 3.99 

Logarithm of number of years the section is active 1.389 5.41 3.73 

Logarithm of lane average annual daily traffic 1.745 15.64 0.68 

Ohio state indicator  

(1 if the section is in Ohio, 0 otherwise) 

0.528 4.11 7.72 

Proportion of section with outside rumble strip -0.391 -3.15 -0.048 

Logarithm of distance from the nearest downstream 

exit ramp in miles 

0.107 3.25 1.71 

Dispersion parameter 2.13 10.83  

Number of observations 478 

Log-likelihood at convergence -1352.16 

Constants only log-likelihood -1532.26 

 

  



 

 

78 

 

 

  
Figure 9. Observed counts versus predicted counts by random parameters negative binomial model for non-

injury crashes. 

 

 

  
Figure 10. Observed counts versus predicted counts by random parameters negative binomial model for 

injury crashes.  
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Figure 11. Frequency distribution of difference in predicted non-injury crash counts by univariate negative 

binomial model and observed crash counts.  

 

 

 

 
Figure 12. Frequency distribution of difference in predicted injury crash counts by univariate negative 

binomial model and observed crash counts. 
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The bivariate model performance is then compared with the univariate models using various 

metrics including median absolute deviation (MAD), sum of squared errors (SSE), mean squared 

errors (MSE), root mean squared error (RMSE), mean absolute percentage error for sections with 

non-zero crash counts (MAPE). Table 26 contains all the metrics calculated for bivariate and 

univariate models. Interestingly univariate model is performing better in all metrics only for the 

non-injury crashes when compared to the bivariate model. However, bivariate model is 

outperforming the univariate models for injury crashes. Figure 13 and Figure 14 shows the 

frequency distributions of crash counts prediction by bivariate model minus predictions by 

univariate model for non-injury and injury crashes respectively.  According to Figure 13, bivariate 

model’s count predictions for non-injury crashes are slightly higher than those by the univariate 

model. However, Figure 14 suggests that bivariate model’s injury crash counts predictions are 

lower than those by the corresponding univariate model.  

 

 

Table 26. Summary of goodness-of-fit measures for bivariate and univariate model predictions.  

 

Goodness of fit test 
Non-injury crashes Injury crashes 

Bivariate Univariate Bivariate Univariate 

Median absolute deviation (MAD) 7.36 1.84 3.71 3.33 

Sum of squared errors (SSE) 80664.60 16398.69 18495.94 43345.19 

Mean squared error (MSE) 168.75 34.31 38.69 90.68 

Root mean squared error (RMSE) 12.99 5.86 6.22 9.52 

Mean absolute percentage error (MAPE) 

(non-zero) 
63.57 30.81 58.87 131.83 
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Figure 13. Frequency distribution of difference in predicted non-injury crash counts by bivariate negative 

binomial model and observed crash counts. 

 

 

 

 
Figure 14. Frequency distribution of difference in predicted injury crash counts by bivariate negative 

binomial model and observed crash counts. 
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the study are data specific and using a different dataset might lead to different conclusions. The 

data used in this study contain only 478 observations and increasing the sample size may affect 

the findings. The performance metrics used in this study compared the performance of models 

using in-sample predicted values and further studies needs to be carried out using out-of-sample 

predicted values. Moreover, performance metrics used in this study are based on individual level 

predicted values and further evaluation is needed using other performance metrics based on overall 

data fit such as Akaike information criterion (AIC).  

Most importantly, however, both univariate and bivariate safety had statistically significant 

random parameters, suggesting that unobserved heterogeneity is playing an important role. Again, 

the performance of both of the random parameters bivariate models and the random parameters 

univariate models suggest that their ability to capture missing attitudinal and behavioral elements 

through mixing-distributions is an important practical consideration in model estimation. Because 

attitudinal data is nearly impossible to gather with traditional crash-data source, the importance of 

considering unobserved heterogeneity via mixing distributions or other methods is an empirical 

necessity. 
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Conclusions and policy implications 

Highway accidents are complex events that involve a variety of human responses to 

external stimuli, as well as complex interactions between the vehicle, roadway features/condition, 

traffic-related factors, and environmental conditions. Among these complexities, attitudes toward 

safety play an important role and there is a vast body of evidence from fields such as psychology, 

neuroscience, economics, and cognitive science that suggest these attitudes change over time 

(Mannering, 2018). The most widely used data source (police-reported crash data) does not gather 

information on safety attitudes. For statistical models that are conditioned on a crash having 

occurred (such as the models in Part I of this report) researchers are forced to use observed data 

such as age and gender as proxies for safety attitudes. For models that deal solely with the 

frequency of crashes (such as the models in Part II of the report) crash-specific information (other 

than frequencies of severity) are typically not used because of the high variance of information 

from one crash to the next. Further complicating matters is that data such as age and gender are 

only gathered once a crash has occurred and the people involved in crashes are not likely to be a 

representative sample of the motoring population (riskier motorists will be overrepresented). It is 

also important to note that emerging data sources from video footage and other sources will also 

be missing important attitudinal information and other factors. 

In the academic literature, researchers have addressed these un-collectable data as unobserved 

heterogeneity using mixing distributions, latent classes and other methods discussed extensively 

in Mannering et al. (2016). Unfortunately, heterogeneity models based on mixing distributions 

have not found their way into safety practice primarily because researchers have incorrectly 

applied them, using the means of the random parameters to forecast out-of-sample data instead of 

enumerating through the complete random-parameter distribution. This has led some researchers 
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to erroneously conclude that random parameter models do not predict well. Out-of-sample 

prediction with both crash frequency and crash severity random parameters models must be done 

with full simulation through the random parameters distributions as illustrated in Hou et al. (2022). 

With respect to the injury-severity models, recent studies by Islam et al. (2020), Alogaili and 

Mannering (2020), Alnawmasi and Mannering (2022), Islam and Mannering (2022) have all used 

estimated random parameters injury-severity models for out-of-sample prediction by correctly 

simulating through the random parameter distributions, as opposed to simply using the mean of 

the random parameter (this approach is also demonstrated in Part I of this report). When done 

correctly, it can easily be shown that random parameters models predict crash frequencies and 

injury severities significantly better than their traditional fixed-parameters counterparts. 

The findings of this report clearly show that mixing distributions (random parameters) are 

a statistically viable approach of capturing unobserved effects (which include motorist attitudes 

toward safety). Based on the findings in this report, and the findings of a growing body of recently 

published research, it is essential that highway safety practice incorporate unobserved 

heterogeneity in their safety handbooks (such as the aforementioned Highway Safety Manual). 

This means that the manual would have to be accompanied by a simple software package that 

would be capable of simulating through the random parameter distributions to get appropriate out-

of-sample predictions. This would not be an onerous task and would have the potential to 

significantly improve safety practice and save lives. 
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